
Artificial Intelligence 61 (1993) 209-261
Elsevier

ARTINT 959

209

DENDRAL: a case study of the
first expert system for scientific
hypothesis formation*

Robert K. Lindsay
University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA

Bruce G. Buchanan
Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260, USA

Edward A. Feigenbaum
Knowledge Systems Laboratory, Department of Computer Science, Stanford University,
Stanford, CA 94305, USA

Joshua Lederberg
Rockefeller University, New York, NY 10021~6399. USA

Received April 1991
Revised June 1992

Abstract

Lindsay, R.K., B.G. Buchanan, E.A. Feigenbaum and J. Lederberg, DENDRAL: a case
study of the first expert system for scientific hypothesis formation, Artificial Intelligence 61
(1993) 209-261.

The DENDRAL Project was one of the first large-scale programs to embody the strategy of
using detailed, task-specific knowledge about a problem domain as a source of heuristics,
and to seek generality through automating the acquisition of such knowledge. This paper
summarizes the major conceptual contributions and accomplishments of that project. It is an
attempt to distill from this research the lessons that are of importance to artificial
intelligence research and to provide a record of the final status of two decades of work.

Correspondence to: R.K. Lindsay, University of Michigan, 205 Zina Pitcher Place, Ann Arbor,
MI 48109, USA. Telephone: (313) 764-4227. Fax: (313) 747.4130. E-mail: lindsay@umich.edu.

*This research was supported by the National Aeronautics and Space Administrations, the
Advanced Research Projects Agency of the Department of Defense, and the National Institutes of
Health.

This paper draws upon [37], expanding and updating that account in light of subsequent
developments and the benefit of hindsight. Large portions of descriptive material are taken nearly
verbatim to make the present paper self-contained since the book itself is no longer in print.

OOO4-3702/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

210 R. K. Lindsay et al.

Keywords: Expert systems; heuristic programming; organic chemistry; DENDRAL; mass
spectrometry; scientific discovery.

1. Introduction

Within computer science the DENDRAL Project is noteworthy in several
ways. It was the first major application of heuristic programming to experimen-
tal analysis in an empirical science, a practical problem of some importance. It
was one of the first large-scale programs to embody the strategy of using
detailed, task-specific knowledge about the problem domain as a source of
heuristics, and to seek generality through automating the acquisition of such
knowledge. It has achieved a high level of performance, because it used a
substantial amount of knowledge of chemistry. The DENDRAL programs
were knowledge-driven, in the sense of today’s expert systems, with the
knowledge principle--that knowledge is power-first articulated in the context
of DENDRAL [16]. They were the first to use the concept of a separate
knowledge base that could be edited or redefined for new problems while
retaining all the same code for interpreting and using that knowledge. DEN-
DRAL was the first rule-based system applied to a “real-world” problem. It
has been used by chemists, other than its developers, in the pursuit of their
own research goals. It was an interdisciplinary project that was continuously
productive for over a decade. It was one of the larger, more sustained AI
projects undertaken, giving it a certain prominence even apart from its
successes. Perhaps most significant is that this research was an extensive
empirical exploration of heuristic programming techniques; as such it was a
validation of the strengths and weaknesses of these techniques and an instantia-
tion of a philosophical concept of automatic discovery procedures whose status
had long been in dispute.

The knowledge principle, as stated in [32] is:

A system exhibits intelligent understanding and action at a high
level of competence primarily because of the specific knowledge
that it can bring to bear: the concepts, facts, representations,
methods, models, metaphors, and heuristics about its domain of
endeavor. (p. 1173).

This principle is now widely accepted, but at the time of the early development
of DENDRAL it stood in sharp contrast to the prevailing view that ascribed
intelligence primarily to reasoning power. The knowledge principle, in con-
trast, asserts that specific knowledge is the major source of machine and human
intelligence, and will suffice with even a simple inference method. Empirical
support for this principle is now abundant, and DENDRAL’s performance is a
major underpinning of this empirical evidence.

DENDRAL: a cuse study 211

Whether DENDRAL was the first expert system is debatable; it was
certainly the first application of AI to a problem of scientific reasoning. In his
forward to [7], Allen Newell identifies MYCIN as “the granddaddy of expert
systems”, but acknowledges that those associated with both projects may not
concur.

Issues of precedence aside, DENDRAL introduced several novel concepts of
program organization that have found substantial application. The point of this
case study is to illuminate the AI aspects of DENDRAL and to provide the
basis for future studies of intelligent systems.

“DENDRAL” is the name of the project and also the name of the
programs, sometimes further distinguished as Heuristic DENDRAL and Metu-
DENDRAL. DENDRAL originally stood for DENDRitic ALgorithm, a
procedure for exhaustively and non-redundantly enumerating all the topo-
logically distinct arrangements of any given set of atoms, consistent with the
rules of chemical valence. The original algorithm, which generated only
ring-free (acyclic) structures (i.e., the aliphatic compounds) was devised by one
of the authors (Lederberg [29-311). The Dendritic Algorithm (as well as its
later version, which in addition encompasses ring structures) is the heart of the
DENDRAL programs. This algorithm defines the set of possible solutions
through which the DENDRAL programs search for likely solutions. A basic
feature of DENDRAL, and an important limitation on the range of applicabili-
ty of its methods, is its uniform notation for hypotheses, here taking the form of
graphs in the abstract sense of points (nodes) linked by lines (edges), depicting,
respectively, the atoms and bonds of molecules.

The means by which the programs reduce the set of possible chemical graphs
is the real story of DENDRAL. As Newell put it:

DENDRAL has strong links to classical problem-solving programs,
with a heuristically shaped combinatorial search in a space of all
isomers at its heart and a representation (the chemical valence
model) that provided the clean space within which to search. [7,
page xiii]

The heuristics employed are based on judgment and specific chemical
knowledge, the kinds of expertise that are popularly called experience and
intuition. Heuristic DENDRAL comprises the programs that employ these
methods. An important point, one on which the success of the project turned,
was that the constructors of the DENDRAL programs eschewed the search for
general principles of problem solving or learning in favor of specific knowledge
of a special problem. The success of this project against the general back-
ground of failure, at that time, of the search for general systems does not, of
course, decide the issue of better approach; but it attracted attention. The
DENDRAL Project spanned approximately the second and third decades of

212 R.K. Lindsay et al.

artificial intelligence research. This period was one of great change in computer
technology and in the attitudes, aspirations, and activities of the research
community working on problems of artificial intelligence.

The major goal of AI research is a productive understanding of the processes
of intelligent thought. In its first decade (approximately 1954-1964), AI was
characterized by enthusiasm and optimistic forecasts of the imminent solution
of many problems of psychology, linguistics, mathematics, philosophy, technol-
ogy, and management. By the end of the decade, when DENDRAL was in its
initial stages, these optimistic forecasts were being reevaluated. The now
classic example of unfulfilled forecast is mechanical translation of natural
languages. This and most other problems outside previously formalized do-
mains have proved far more difficult than many AI pioneers imagined.

In the mid 1960s AI was in a transition stage [19]. On the one hand, the
newly discovered difficulty of the adopted problems was tempering optimism
and in some quarters producing pessimists. Long-standing critics of determin-
ism in general, and technology in particular, were coming out of the closet. On
the other hand, some work on general problem-solving procedures still held
promise in the view of many researchers. The General Problem Solver (GPS)
[15] had yet to have its limitations established. A bright light was the resolution
procedure [46] for proving theorems in the predicate calculus: a complete,
uniform proof procedure for a general calculus seemed promising indeed.
Ironically, the search for general problem-solving methods was being pursued
on a broad front at the same time that specific solutions to special problems
were failing to produce results.

A second aspect of this transition stage was the astoundingly rapid develop-
ment of computer technology. Solid-state, second-generation hardware was
replacing the slower, less reliable equipment. Telecommunications technology
was being interfaced with computers on a large scale. Time sharing of
computers had been conceived and was to become a reality in the 1960s.
Software in general and executive systems in particular were reaching new
levels of sophistication. List-processing and string-processing languages were
becoming readily available. These developments combined, in the early 197Os,
into facilities that eclipsed in power those available ten years earlier. Today’s
student using a high-level language on a workstation is interminably amused by
tales of the days when a programmer would carry a box of punched cards to a
computing center and return some days later only to find that a bug in the
compiler, a mis-punched control card, or an operator error had terminated the
job. The first large implementation of DENDRAL was done over long-
distance telephone lines linking a model-33 teletype in Palo Alto with the Q32
computer at System Development Corporation in Santa Monica, with tele-
phone bills of $2000 per month being common. When the DEC PDP-6
computer arrived at the Stanford AI Lab, the program was transferred there,
running in 16K words when loaded with LISP 1.5. Although none of today’s
wealth of computer sophistication would have struck the early workers as

DENDRAL: a case study 213

science fiction beyond their dreams, the additional load imposed by the
bothersome conditions of the time were enough to swamp many well-conceived
projects of realistic scope.

It was in this milieu that DENDRAL began. An important fact about
DENDRAL-though not unique to it-is that it undertook a relatively narrow
and well-defined problem for which there was a clear measure of success. The
major lesson DENDRAL has for artificial intelligence, and for those dis-
ciplines interested in the application of AI techniques, is that it is possible to
select problems of modest complexity that nonetheless baffle the novice, and to
reduce these problems to some order, resulting in a problem-solving system
that lends needed assistance to human intelligence. By lowering one’s sights
from solving broad, general problems to solving a particular problem, by
applying as much specific knowledge to that problem as can be garnered from
human experts, and by systematizing and automating the application of this
knowledge, a useful system can be produced. This lesson underlies the success
of today’s expert systems.

In this paper we have a dilemma of needing to use chemical concepts to
explain what the program does, what it knows, and therefore how it works. We
have attempted to define many of the concepts, with apologies to those who
are already familiar with them, but we have not attempted sufficiently detailed
definitions to satisfy a professional chemist’s need for details.

The fundamental problem of analytic chemistry is to determine the chemical
structure of molecules. This is described in the next section. A molecule is
composed of many atoms (mostly, in organic chemistry, carbon, hydrogen,
oxygen, phosphorous, and sulfur) arranged and held in a stable three-dimen-
sional structure by electron sharing and other energies or forces among the
atoms. The electron sharing that binds one atom to another is called a chemical
bond. Often the three-dimensional arrangement is suppressed in favor of
representing only a two-dimensional schematic drawing of the atoms and their
chemical bonds, a representation known as the topology of the molecule. It is
conventionally shown as a labeled graph with non-directed arcs between nodes
that are labeled as chemical atoms. The geometry of the molecular arrange-
ment refers to the representation of bond angles and bond lengths that position
the atoms in space. A collection of chemical atoms of known types and
numbers is called an empirical formula, and is usually written with numeric
subscripts on the atom names to indicate the number of atoms of each type,
e.g., C,H,,02. Any two different molecular structures with exactly the same
empirical formula are called isomers. They are called stereoisomers if they have
the same topology and differ only in their geometry, for example, structures
that are identical except with one group of atoms positioned above or below a
plane defined by the rest of the molecule. The four valence bonds of the
carbon atoms are topologically equivalent, but with different labels can be
disposed in two geometries, usually called dextro and fevo, which are mirror
images of one another.

214 R.K. Lindsay et al.

2. The structure elucidation problem of organic chemistry

The general problem to which the DENDRAL programs apply is an
important, substantive problem in organic chemistry: structure elucidation,
that is, the determination of the organization of the chemical atoms in specific
molecules. The problem is important because the chemical and physical
properties of compounds are determined not just by the heap of their
constituent atoms, but by the topological and geometric arrangement of these
atoms as well. Several empirical means are available for obtaining information
about the structure of a compound. Prominent among these is mass spec-
trometry, and DENDRAL originally addressed problems associated only with
this method, although it evolved to deal with the problems of structure
elucidation on more general terms. The earliest versions of DENDRAL were
mostly concerned with topology, or connectivity information about molecules,
because the context of its development was mass spectrometry, which is largely
insensitive to geometry, or stereoisomerism. Thus to DENDRAL, different
geometric forms of the same topology were entirely equivalent. Later versions
added specialized postprocessing knowledge and procedures to deal with
three-dimensional geometry, chemical reactivity, and data beyond mass spec-
tra. The core structure of DENDRAL remained the same.

The identification of a molecule means at least that its topological organiza-
tion is known; it is usually represented as a graph with atoms as nodes and
bonds as edges. Initially DENDRAL was applied to aliphatic compounds only
since an enumeration algorithm for cyclic compounds had not yet been
programmed. The compounds studied were, in roughly chronological order,
amino acids, ketones, ethers, alcohols, amines, thiols, and thioethers. Later
versions of DENDRAL, incorporating the cyclic structure generator, have
been applied primarily to steroids, in particular estrogens, marine sterols, and
related compounds.

The DENDRAL programs are not limited in application to these classes of
compounds, but are general mechanisms that could be applied to any com-
pounds for which certain types of information are available. A practical limit
on size of molecules amenable to the DENDRAL and conventional mass
spectrometry analysis methods is, roughly, 100 atoms. Recently mass spec-
trometry has been successfully applied to the measurement of mass numbers of
proteins with thousands of atoms [l]. If mass spectral analysis of fragments of
proteins had been available, DENDRAL might have been applied to that
analysis (and undoubtedly will be in the future), using superatoms (see below,
Section 3.2.1) to represent individual amino acids of twenty types arranged in
linear sequences, or to represent DNA sequences. As it was, the applications
were selected in part for their value in developing the DENDRAL concepts
and in part because they were of interest for their importance to contemporary
chemistry.

DENDRAL: a case study 215

The choice of structure elucidation as the target problem in the initial
development of the DENDRAL system is an early illustration of the first phase
of the development cycle of expert systems [21, Chapter 51. Around 1963
Feigenbaum became interested in studying information-processing models of
human empirical induction as an alternative to the puzzle-solving and game-
playing task environments of Newell and Simon. In the summer of 1964 he
worked with Buchanan on a simple concept formation program that induced a
general concept definition from examples. In 1965 he mentioned to Lederberg
that he was looking for a suitable problem in science in which to study
induction of scientific hypotheses and Lederberg suggested the task of chemical
structure elucidation using empirical data from mass spectrometry. There were
numerous reasons why this was a good choice from a scientific point of view,
including the technical merits of LISP for representing and manipulating the
tree structure representation of chemical graphs. The non-AI motivation, and
importance of the overall problem to an outside “client”, came from Leder-
berg’s involvement in NASA’s Mariner mission and its on-board experiments
to look for evidence of life on Mars. A mass spectrometer was part of the
on-board instrumentation and Lederberg wanted means of identifying
chemical compounds on Mars that were not also found and catalogued
in Earth-based libraries. (It would have been desirable to do the analysis
itself on Mars to avoid the long delays in sending and receiving radio
signals. However the tempo of space technology outpaced that of computer
engines. The design of Viking 1975, the first Mars mission, was frozen by
1970, before there were space-qualified computers powerful enough to run
DENDRAL.)

A first prototype of the solution generator was programmed (by William C.
White) in 1965, and by the end of that year a definition of the project was well
in hand and a set of open problems was published [17]. Georgia Sutherland
and Buchanan were recruited in 1966 and by 1968 the basic design principles of
expert systems were instantiated.

Lederberg consciously invoked a recognized authority in mass spectrometry
only after using his own knowledge sufficiently to demonstrate the program’s
potential to an outsider. In a well-orchestrated demonstration to Professor Carl
Djerassi, an internationally known expert at Stanford, Djerassi saw how stupid
the program was-but he saw a running program. The immediate question,
which has become a cornerstone of knowledge engineering, was “What
do you know about this problem that the program does not know?” Then
Djerassi assigned additional experts from his laboratory, Dr. Alan Duffield
in particular, to work with Buchanan almost daily in the transfer of
expertise that has come to be known as knowledge engineering. One of
the first descriptions of the knowledge engineering process, with a recon-
structed transcript of part of a knowledge engineering session, was published
in 1970 [9].

216 R.K. Lindsay et al.

2.1. Mass spectrometry

Only recently, with the development of scanning tunneling microscopy, have
atoms become examinable by optical means. To determine the structure of a
molecule of any complexity, chemists normally resort to indirect methods. One
of the most fruitful of these is mass spectrometry. The foundations of mass
spectrometry were laid around the turn of the century by Wilhelm Wien and
J.J. Thomson. By 1935, the main features of modern instruments had been
developed by A.J. Dempster and others. An explosion of interest in mass
spectrometry occurred in the 1960s as it became a laboratory tool of value to
analytical chemists [40]. Carl Djerassi, for example, had co-authored one of
the early, influential books [ll].

The essence of the technique is to decompose large molecules into frag-
ments, infer the composition of these overlapping fragments, and use this
information to guess the structure of a molecule that would break to yield the
same observed set of fragments. A molecule bombarded with electrons in the
mass spectrometer does not always end up in just two fragments; some
fragments decompose further. Target molecules in a sample do not all frag-
ment in the same places. Thus the data reflect a statistical distribution of
fragments, with relative frequencies determined by the relative extent to which
some bonds are more frangible than others. For example, single bonds
generally break more readily than double bonds. Also, certain groups are
relatively immune from breaking in the mass spectrometer. For example,
C=O will generally break off as a unit or remain as a constituent of a larger
unit, but will seldom itself break.

Many of the fragments are electrically charged (that is, they are ions,
normally singly charged), that can be accelerated by an electric field. Frag-
ments of lesser mass reach higher velocities than those of greater mass (and
equal charge).’ The beam of ions thus produced passes into a magnetic field
perpendicular to its path and is deflected, in accordance with the laws of
electromagnetism and mechanics, with higher velocity (lower mass) fragments
being deflected by greater amounts. The result is a sorting of fragments by
mass (actually by mass to charge ratio). The early instruments were of low
resolving power (thus the name low-resolution mass spectrometry). that is,
they resolved masses of chemical compounds and fragments only to the nearest
integral mass unit. High-resolution mass spectra, which allowed precise identi-
fication of the numbers of atoms of each type in a compound fragment. became
available routinely after DENDRAL was begun and were incorporated into it.
This also allowed more precise heuristics but did not alter the structure of the
program.

’ Positively charged ions are usually examined, but negative ions can be studied in specially
designed instruments.

DENDRAL: a case study 211

2.2. Other analytical methods

A chemist can (and usually does) gather other kinds of information about an
unknown compound. At the very least there will be some information about its
source and extraction methods, which often suggests probable constituents.
Laboratory analyses may also provide further clues of this sort. In addition
other instrument-based techniques provide information about the compound.
The most common among these are gas chromatography, infrared spec-
trometry, ultraviolet spectrometry, and nuclear magnetic resonance spectrometry
(NMR). Information from these and other techniques was incorporated in
DENDRAL in three ways. First, constraints inferred manually from these data
were added for each problem to the constraints used by the generator. Second,
knowledge and programs were added to infer many of these constraints
automatically. Third, knowledge and programs were added for postprocessing
to predict experimental data that could discriminate among candidate struc-
tures.

3. The solution method

DENDRAL is not a single program but a set of programs. Some of these
programs may be used alone to perform single subtasks of importance to the
problem of chemical structure elucidation. Some may be linked in various ways
by different executive programs to form coherent systems for larger tasks. To
organize the description of this collection of intertwined programs we first note
that they comprise basically two systems. The first, called Heuristic DEN-
DRAL, is a system that incorporates specific knowledge of chemistry and mass
spectrometry, accepts a mass spectrum and other experimental data from an
unknown compound as input, and produces an ordered set of chemical
structure descriptions hypothesized to explain the data. The second system,
called Meta-DENDRAL, accepts known mass spectrum/structure pairs as
input and attempts to infer the specific knowledge of mass spectrometry that
can be used by Heuristic DENDRAL to explain new spectra. Heuristic
DENDRAL is a performance system and Meta-DENDRAL is a learning
system. Our emphasis in this paper is on the former. For information on
Meta-DENDRAL, see [5,6].

It must be kept in mind that the descriptions here are somewhat idealized
expositions of the programs. Early versions, described in other publications,
were used to produce many of the results summarized later. No single version
has been systematically applied to all the specific structure elucidation prob-
lems investigated by the project.

218 R.K. Lindsay et al.

3.1. The plan-generate-test organization of DENDRAL

The basic method of Heuristic DENDRAL is an important extension of the
generate-and-test paradigm in which a generator enumerates potential solu-
tions, which are expressed as chemical graphs in the case of DENDRAL. It is
often desirable, though not essential to the paradigm, for the generator to be
non-redundant as well as exhaustive: that it guarantee every possible solution
be enumerated exactly once. A non-exhaustive generator would be unconvinc-
ing; a redundant one would be inefficient or non-terminating. DENDRAL’s
way of limiting generation is with a planning program that can suggest
constraints on generation. This component distinguishes plan-generate-test
from generate-and-test. Constraints may take the form of guidance about parts
of the solution space to ignore or parts to focus on, or both.

The DENDRAL planner is itself an hypothesis formation program that
employs task-specific knowledge to find constraints for the generator. It is
important that the planner be extremely flexible in the sense of permitting the
ready addition of new knowledge. Ideally, the knowledge will be highly
modular so that it is possible to add new knowledge without reevaluating the
old. Further selection is performed by the third and final stage, a testing
program called the PREDICTOR. This is a program that examines each
proposed solution and rejects those that fail to meet certain criteria. The
PREDICTOR incorporates a theory of mass spectrometry that predicts what
fragmentations a proposed chemical structure will undergo in a mass spec-
trometer and constructs a mass spectrum accordingly. This predicted spectrum
may then be compared to the one produced in the laboratory.

Both planning and testing programs constrain the set of likely solutions with
respect to analytic data available (e.g., a mass spectrum) and knowledge about
the data source (e.g., partial theory of mass spectrometry). It might be thought
that it is much more economical to apply constraints first, in the planning stage,
rather than last, in the testing stage. In some measure this is true, and every
effort is made to pre-constrain the generator. However, pre-constraint is not
always possible, in this case because the theory generally requires a completed
structure, and not a partially generated one, to make a strong enough
statement to allow pruning.

The feature that gives the plan-generate-test paradigm its cohesiveness is
the uniform representation used by the three components. In the case of
DENDRAL this representation is chemical graphs. The planner devises hy-
potheses that reject and/or propose certain classes of chemical graphs, the
generator generates chemical graphs, and the tester represents fragmentation
processes in terms of chemical graphs. This common representation is the glue
holding DENDRAL together.

Table 1 introduces the names of some of the component programs and data
structures of the DENDRAL system and outlines their interrelationships.

DENDRAL: a case study 219

Table 1
Organization of the heuristic DENDRAL programs

Operation Components Input

Planning MOLION Mass spectrum

Planning rule Planning rules

output

Molecular ion
constraints

Constraints
generator

PLANNER

Generating

Testing

Acyclic generator
CONGEN
GENOA
STEREO
PREDICTOR

MSPRUNE

REACT

Planning rules

Constraints

Superatoms
GOODLIST
BADLIST
Candidate molecular

structures

Candidate molecular
structures

Mass spectrometry
rules

Reaction chemistry
rules

Most plausible
structures

Structures consistent
with spectrum

Structures consistent
with known
reactions

3.2. The DENDRAL generator

The seminal insight for DENDRAL was the original algorithm for exhaus-
tively and non-redundantly generating acyclic structures as reported in (29-311.
This algorithm, embodied in computer code, was the basis of the first
DENDRAL system. When the limitation to acyclic structures was overcome
[2, 31, DENDRAL increased its scope dramatically.

The cyclic generator includes the acyclic generator as a component. The
complete algorithm is complex, but its correctness has been rigorously proved
[2]. Because the graph generation algorithms were proven to be correct in
theory, DENDRAL’s procedures may be directly applicable to other knowl-
edge-based systems in which hypotheses may be represented as labeled graphs.

The program’s ability to generate hypotheses exhaustively and without
redundancy is the key to assuring scientist-users that every plausible hypothesis
appears in the output. Implausible hypotheses are pruned from a search space
that is guaranteed to be complete for reasons explicitly stated in the con-
straints-and only for those reasons. This is known as the exclusion paradigm
in AI and has guided the construction of other knowledge-based systems in
science [23]. In philosophy at least since the 17th century this has been called
induction by enumeration.

In spite of the fact that there is no way of proving that a program is a correct
embodiment of a complex algorithm, the generator program has passed the
important test of enumerating the correct number of structures for many cases
where the number of structural isomers was computed independently, and has

220 R. K. Lindsay et al

been extensively checked against hand-calculated examples. We do not serious-
ly doubt the program’s correctness.

3.2.1. The generator
The generator of molecular structure descriptions is itself algorithmic. It is

based on Lederberg’s notational algorithm, which assigns a unique name to
every topologically distinct structure. Considerable design and implementation
effort was needed to transform the notational algorithm into an efficient
generating algorithm. In the case of molecular graphs without rings, the acyclic
structures, the transformation was straightforward, and the main effort was in
making the implementation flexible enough to be guided by user-defined lists
of substructures to avoid or to include (BADLIST and GOODLIST).

For structures with rings, however, the notational algorithm was not easily
transformed into a generating algorithm. It was important, and difficult to
prove, that the generation was complete, i.e., that every distinct structure with
a given number of nodes of given types was generated. The particularly
difficult issue, besides efficiency, however, was avoiding generation of dupli-
cate structures. Because of the many-fold symmetries of some structures, it was
extremely difficult to guarantee that no single structure was duplicated. The
generator that was finally designed and implemented was proved to be both
complete and non-redundant. It was later rewritten for greater efficiency.
Although tuned to generate graphical descriptions of chemical structures, this
generator can be used for any problem in which solutions can be described
graphically. (We are not aware of any actual uses outside of chemistry,
however. Computer programs and LSI circuit design might be promising.) As
with generation of acyclic graphs, flexibility is a primary concern since the
generator must allow guidance with respect to a variety of forms of information
that may be available about plausible and implausible parts of the solution
space. The algorithm is described more fully in [4, 9, 121.

A self-contained system called CONGEN embodies the cyclic structure
generator. Aside from its importance as a powerful system in its own right,
CONGEN illustrates the basic concepts of CONstrained GENeration that
underlie the entire DENDRAL effort and the plan-generate-test paradigm.

We will now describe CONGEN because it demonstrates in clear fashion the
concept of heuristic search in the space of possible chemical structures.
CONGEN permits the user to constrain the enumeration by specifying several
types of constraints. These are:

(1) substructures that must be present with specific cardinality;
(2) sizes of rings that must be present;
(3) the number of hydrogen atoms that must be associated with a given

structure, without being specific as to where they are bonded;
(4) the number of isoprene units that must be part of the generated

DENDRAL: a case study 221

structures. (An isoprene unit is a Y-shaped grouping of five carbon
atoms; they are particularly abundant in natural products.)

The first step in using CONGEN is to define superatoms. A superatom may
be any connected graph that is treated as a unit, acting in the role of an atom in
the construction of larger structures.

The GENERATE step produces all possible structures of atoms and
superatoms following the algorithm of the cyclic generator but rejecting all
structures violating defined constraints.

The final step, called IMBED, expands (“explodes”) the superatoms one
type at a time so that the resulting final structures are representations of
chemical structures in terms of atoms and bonds only. During imbedding,
structures are also constrained according to the user’s specifications, since the
expansion of a superatom could give rise to violations of constraints that were
not violated by intermediate structures.

The program is interactive, permitting chemists to revise their list of
structures and constraints at any stage. Thus if the generation produces an
inordinate number of possibilities, chemists may add further constraint infor-
mation until they are able to winnow the set down to manageable size. The
final enumeration ideally would be a single structure, though in practice this is
not often the case. However, if the number of structures is sufficiently small to
permit examination of each member, the chemist’s stock of judgment and
intuition that remains uncodified may, at times, be sufficient to make a good
guess as to the correct structure.

The following is a record of a session with CONGEN. The example is very
simple and of no particular chemical interest but serves to illustrate the
program’s syntax and behavior. The constraints listed below illustrate the
flexibility and power of the program to use information about chemical
structure that may be inferred (manually or automatically) from a variety of
analytical techniques.

The chemical information available is as follows:

Cl. The empirical formula is C,,H,,O.
C2. The compound contains a keto group in a five-membered ring.
C3. There are three protons (H’s) alpha (adjacent) to the carbonyl group.
C4. There are two vinyl groups (-C&C-) and four vinyl protons.
C.5. There is no conjugation (alternation of double and single bonds).
C6. There are no diallylic protons (hydrogens at the middle carbon of a

diallylic structure: -C==C-C-C=C-), nor protons alpha to both a
vinyl and the keto group.

C7. There are only two quaternary carbons, one in the keto group and one
in one of the vinyl groups.

C8. There are no additional multiple bonds.
C9. It is assumed there are no three- or four-membered rings.

222 R.K. Lindsay et al.

ClO. There are no methyl groups.

[Comments are bracketed and refer to problem definition statements Cl-ClO,
above. The following transcript has been abbreviated. Structure drawings are
slightly modified from those done by a program authored by Ray Carhart that
has come to be known as “Carhart’s DRAW Program”. It avoided the need for
an expensive graphics terminal by producing teletype compatible drawings.
Today of course much more readable drawings can be made on workstations.]

WELCOME TO CONGEN, VERSION VI.
#DEFINE MOLFORM C 12 H 14 0
MOLECULAR FORMULA DEFINED

#DEFINE SUBSTRUCTURE Z

[Z is the structure required by constraints C2 and C3.1

(NEW SUBSTRUCTURE)

>RING 5
<LINK 1 1 1
>ATNAME 6 0
>HRANGE 2 1 13 12

[C3: atom 5

>DRAW NUMBERED

[C2: form five-membered ring.]
[C2: add keto group.]

412522
will have 2 H’s, which will be alpha to the carbonyl;

atom 2 will have the third H alpha to C=O.]

SUBSTRUCTURE Z (HRANGES NOT INDICATED)
NON-C ATOMS: 6+ 0

#DEFINE SUBSTRUCTURE CH3
(NEW SUBSTRUCTURE)
> CHAIN
>HRANGE 13 3
>DONE
CH3 DEFINED

[ClO: CH, is a methyl group.]

#DEFINE SUBSTRUCTURE V
(NEW SUBSTRUCTURE)

RING 2

[V is the vinyl group: C=C]

[Comment: Here several other structures are defined. VV is a double vinyl:

DENDRAL: a case study 223

C&C-C=C. VH is a “tagged” vinyl. VCHV is a diallyl: -C=C-C-C=C-.
CHO is a quaternary carbon (no hydrogens).]

#GENERATE
SUPERATOM: Z
RANGE OF OCCURRENCES; AT LEAST 1
SUPERATOM: V
RANGE OF OCCURRENCES: AT LEAST 2
SUPERATOM:
‘COLLAPSED’ FORMULA IS C 3 Z 1 V 2 H 9
CONSTRAINT; LOOP Z NONE

[This constraint prevents Z from bonding with itself.]
CONSTRAINT: SUBSTRUCTURE CH3 NONE [Cl01
[Comment: Similarly several other constraints are specified here: Exactly zero
CHO structures (constraint C7), zero VV structures (C5), zero VCHV struc-
tures (C6), zero three- and four-membered rings (C9), exactly four VH
structures (C4B), and exactly three double bonds (C8) .]

18 STRUCTURES WERE GENERATED

[Comment: The following is one of the 18 structures; as required, it contains
one Z and two V’s that will be imbedded later. Most of the constraints have
been employed already, but a few remain for the imbedding steps.]

#DRAW ATNAMED 1

#l:
c-c-v

I I I
v-c-z

#IMBED

[Comment: Z will now be imbedded first. More superatoms could be imbedded
now also.]

SUPERATOM: Z
NUMBER TO BE IMBEDDED: 1
SUPERATOM:
THE ‘EXPANDED’ FORMULA IS 0 1 C 8 V 2 H 14
CONSTRAINT: SUBSTRUCTURE VCHCO NONE

[C6B: VCHCO defines protons alpha to
both V and C=O to be prohibited.]

CONSTRAINT: RING 3 NONE [C91
CONSTRAINT: RING 4 NONE]C91
CONSTRAINT:

224 R. K. Lindsay et al.

[Comment: As CONGEN begins to consider each structure it prints “#” and
for each new structure produced it prints “.“I

#..#..#..#.# # #..###### # #..##..

29 STRUCTURES WERE OBTAINED

#DRAW ATNAMED I

[Comment: The following is a sample structure in which Z has been imbedded.
Note that V’s are not yet imbedded.]

#l:
0

C
/c~~c/v\

‘c-\c $
\/
V

#IMBED

[Comment: The V’s will now be imbedded.]
SUPERATOM: V
NUMBER TO BE IMBEDDED: 2
THE ‘EXPANDED’ FORMULA IS 0 1 C 12 H 14
CONSTRAINT: SUBSTRUCTURE CHO EXACTLY 2

[C7: we must end up with exactly two quaternary carbons.]
CONSTRAINT: RING 3 NONE iC91
CONSTRAINT: RING 4 NONE tc91
CONSTRAINT:

#.#.#.#..#..#..#..#..#..#..#..#.#.#.#..#.#,.

#.#..#.#..#..#...#..#..#.#.#.#..

47 STRUCTURES WERE OBTAINED

#DRAW ATNAMED (5 6)

[Comment: The following is a selection of final structures 5, 6.1

#5:
0

\ C
/”

c-c,
) I c-c’

c-c
\I Ii

c-c c

#6:

DENDRAL: a case study 225

#EXIT
DO YOU WANT TO SAVE YOUR SESSION ON FILE?: YES
FILE NAME: CONGEN.EXAMPLE
SAVED ON CONGEN.EXAMPLE
EXIT

3.2.2. GENOA
CONGEN is capable of producing all possible structures consistent with any

set of constraints that can be formulated in its constraint language. However,
the entire set of constraints must be given at the outset; CONGEN then will
produce a set of fully specified final structures (“leaves” of the tree of
possibilities). The final structures are of course produced sequentially, and
need not be displayed until the user requests. Because generation is depth-first,
the user can be informed of the number of structures generated up to the
present moment. In fact, the initial implementation was breadth-first but the
program was modified to allow users to examine complete structures before all
were generated. The program can be interrupted if the size of the set is too
large, and more constraints can then be added in an attempt to bring the set of
alternatives down to manageable proportions. At any time, some of the fully
specified alternatives can be displayed to guide the selection of additional
constraints, or to make certain that the generation is proceeding along sensible
paths. However, it is not possible to stop CONGEN and examine the
nonterminal nodes of the generation tree in an attempt to examine a class of
solutions. The GENOA program incorporates a generation method that does
permit the examination of intermediate stages of the generation. This provides
the user with an important additional control over the solution process. This
feature is a byproduct of the organization that was selected in order to resolve
CONGEN’s inability to deal efficiently with redundant and ambiguous sub-
structures.

Frequently, the chemist’s data specify that two (or more) substructures must
be present in the solution, but it is not known whether the two substructures
may have shared parts. To use CONGEN, the user must be certain that the
substructures specified as constraints do not overlap. This means that suffi-

226 R.K. Lindsay et al.

ciently small substructures be specified so that they share no parts, or each of
the possible overlaps must be treated as a separate problem. GENOA removes
this burden from the chemist by considering all possible overlaps and treating
them as separate cases (GENOA is GENeration with Overlapping Atoms).

It is also possible that two or more substructures may be plausible alterna-
tives for a given item of structural information. that is, two separate hypotheses
could account for the datum. Again, CONGEN requires that in such a
situation the alternatives be considered as separate problems. GENOA spares
the user this burden by permitting the specification of a set of substructures as
alternatives, and considering automatically the multiplicity of cases this gener-
ates by interaction with other alternative sets and patterns of overlap. This
organization of the generation process is called constructive substructure
search. It represents a substantial improvement in design by lessening the
burden on the user and by providing more, and more timely, feedback of
progress during the solution of a structure elucidation problem.

We have been discussing primarily connectivity isomers. As noted earlier, it
is possible that two molecules with the same atoms and the same connectivity
are nonetheless not superimposable in three-space, that is, they cannot be
deformed, rotated, and translated to be congruent. Such non-superimposable
instances of the same connectivity isomer are called stereoisomers. There are
two classes of reasons why superimposability may be impossible. The first is
because of geometric constraints: the configurations are inherently asymmetric
because of differing configurations of substituents around a center of symme-
try. The second class is due to physical constraints: the orientations of the
bonds are fixed by atomic forces that are not overcome at normal tempera-
tures. These two classes of stereoisomers are called conjigurational and con-
formational. In part, as with connectivity isomers, they are of interest because
they may manifest different chemical and physical properties. They are also
important because many compounds of biological and medical interest have
stereoisomers, with only one of the isomers occurring naturally.

3.2.3. Stereoisomer generation
The DENDRAL system includes programs that non-redundantly generate

all distinct connectivity, configurational, and conformational isomers. These
programs operate in three stages in the order given, and each stage may
employ user-supplied constraints. The connectivity isomers are generated by
CONGEN (and GENOA), the configurational isomers are generated by
augmenting the descriptions of the CONGENIGENOA-supplied connectivity
isomers using the STEREO program [42-441, and the conformational isomers
are generated by augmenting the configurational isomers supplied by STEREO
with descriptions supplied by the CNFCAN program [la].

After the connectivity isomers have been generated, it is possible to elabo-
rate some of the three-dimensional properties of those structures or examine

DENDRAL: a case study 227

the list in various ways. CONGEN has deliberately been kept unencumbered
by these options so as to preserve its prospective avoidance of symmetric
(redundant) structures. Additional programs have been written to allow users
to look at the different relative three-dimensional orientations of any structure
or set of structures and to prune a set of candidate structures with respect to
constraints inferred from data about such orientation. This was largely the
result of creative and highly technical work by Dr. James Nourse. Details are
beyond the scope of this paper. The problem-solving heuristic at work here,
though, is well known in AI: break up huge problems into subproblems.

3.3. Planning

Constraints to keep the generator from producing all possible structures are
necessary for all but the simplest problems. We have seen how certain types of
constraints can be stated in a manner appropriate for the cyclic generator. In
CONGEN and GENOA these constraints are formulated by the user. An early
version of the DENDRAL system used a set of planning rules for aliphatic
compounds elicited from an expert mass spectrometrist [9], with a form of
interaction that is now known as knowledge engineering. Each rule specified
features of the spectrum that are associated with a particular structure. The
planning phase then examined the spectrum for the specific evidence and if it
was present the associated structure was added as a GOODLIST constraint.
The declarative representation of BADLIST and GOODLIST in the first
version of DENDRAL (as global lists of names of chemical substructures)
facilitated writing the planning programs that added items to those lists. The
planning rules are found in [a].

An extension of this planning method, in which the rules themselves are
automatically generated by the planning rule generator, is described in [lo].
Although we did not make the connection at the time, we were following the
advice John McCarthy first published in 1958 (see [39]) that we should
represent knowledge declaratively so that it can be changed easily by humans
or programs. (Of course, his paper prescribes logic as the declarative
language-part of the advice that we were deliberately avoiding.) Explicit,
changeable representations of knowledge are now the cornerstone of expert
systems.

The latest DENDRAL PLANNER program further automates some aspects
of constraint formulation. It embodies a form of mass spectrometry theory that
the users instantiate to produce a particular theory for the particular class of
compounds with which they are working. This theory is not a sweeping
generalization but a collection of specific hypotheses about the likely loci of
breaks that will occur when a compound in the class is placed in the mass
spectrometer.

It is important to note that there is not a one-to-one relationship between a

228 R.K. Lindsay et al

process described in the theory and data points in the mass spectrum. A
process may occur in several places in a single compound, and a data point in
the spectrum may be the result of several different processes. This makes the
data interpretation problem more complex than in many expert systems, for
example for troubleshooting, where the observations have more significance.

Input to the planning phase is: (1) the basic skeleton of the compound class,
i.e., the structure common to all members of the class, (2) definitions of the
various breaks that might occur, and (3) a mass spectrum (either low or high
resolution). The program determines the empirical formula (using the MOL-
ION program, a heuristic program that is usually able to identify the molecular
ion from mass spectrum data alone) even if the spectrum does not contain a
peak corresponding to it. It then formulates constraints that specify which sites
on the skeleton are likely, and which are unlikely, locations for the nonskeletal
groups of atoms. The substructures that are attached to the skeleton are called
substituents, since they substitute for the hydrogens that would otherwise be
there.

The first version of planning was written for the acyclic generator applied to
the aliphatic ketones. Planning information for these compounds was obtained
by careful questioning of mass spectrometrists about ketones in the mass
spectrometer, that is, about the kinds of fragmentation processes that were
most likely to occur. As is commonly the case with today’s knowledge
engineering assignments, this knowledge had never been completely codified
and thus the effort to specify the information for DENDRAL was valuable to
chemists as well. It proved successful and provided the first version of the
system in the full plan-generate-test form where planning was based on
planning rules that encompassed sophisticated judgmental rules from an ex-
pert. These rules of data interpretation took the form:

{data points} + situations in which these data are produced

In particular:

Set of m/e peaks-subgraph

where “Q” is read “implies that the molecular structure graph contains”. Note
that the rules of data interpretation are the “inverse” of rules that predict or
simulate the behavior of a device that produces the data in the first place. The
theory by which mass spectrometers are designed and built, for example,
allows theoretical calculations of bond dissociations based on bond strengths
and the energy level of the electron beam. Not only are these calculations
computationally expensive, they are not invertible. That is, they do not allow
one to calculate what chemical compound was put into the device, given its
output. Data interpretation is a common problem posed to developers of
expert systems for just these reasons. Furthermore, the solution is just the
same: ask an expert how to interpret the data.

DENDRAL: a case study 229

For many analytical problems it is known what class of compounds is under
investigation, particularly when the source of the material is known and the
empirical formula of the molecular ion has been determined. If chemists have
experience with this class, they may know enough about the fragmentations
that are most likely to have occurred to allow them to predict efficiently the
behavior of an arbitrary compound of that class. This class-specific informa-
tion--even in its predictive form-can be used to produce constraints that will
reduce the DENDRAL generator’s output, as was done for a few subclasses of
steroids [49-511.

Predictive rules of mass spectrometry were represented in DENDRAL as
productions of the form

situation+ action

or

chemical subgraph + mass spectroscopy process

where the actions, or processes, were the fragmentations and rearrangements
that occurred in the instrument that caused particular charged fragments to be
produced and subsequently collected and recorded in the mass spectrum.
Fragmentations or breaks are defined by specifying (1) the bonds that break,
(2) the charge location, (3) any accompanying transfers of hydrogen atoms into
or out of the charged fragment, and (4) any accompanying losses of small
molecules such as water. Breaks are represented schematically as in Fig. 1.

To convert this knowledge into a form that is useful for interpretation
requires fixing a substantial part of the situation description, e.g., the steroid
skeleton. Then the variable parts of the situation (in our case the chemical
atoms not assigned to the skeleton) can be added hypothetically in plausible
combinations to the fixed part of the situation. The predictive rules can then be
applied to a situation that is fully enough described to allow some rule(s) to

C’

C2

c

C’

C3 C”

C’

Fig. 1. Schematic representation of a fragmentation. This fragmentation involves breaking two
bonds. The arrow indicates the positive charge placement.

230 R. K. Lindsay et al

fire. The right-hand side process then can be simulated to determine which
data points one would see if this modification of the situation were true. As
long as the combinatorics of modifying the situation are not crippling, this
general technique should allow representing knowledge (when known) only in
its predictive form. It may be more efficient or more precise to represent it in
its inverse form in many cases, but it is sufficient to represent it only once in
some cases.

In the case of DENDRAL this general technique was applied in the
following way. From the empirical formula and the definition of the class
skeleton, the program can readily determine the numbers and types of atoms
and unsaturations that are not part of the skeleton and which thus are available
to form the substituent structures that distinguish the particular compound
under investigation. It remains to determine the exact composition of each
substituent and its location on the skeleton. To do this determination, the mass
spectrum is consulted for evidence that can be associated with each of the
hypothesized breaks. In general, all these breaks may have occurred, but the
fragments resulting from a particular break will have compositions that differ
depending on how the substituent atoms are divided among the fragments. The
program determines for each break all the ways the substituent atoms may be
divided and the evidence in the spectrum associated with each division. This
process of course does not determine the exact location or composition of a
substituent. However, combining the information from all the breaks further
narrows the possible arrangements.

The PLANNER, and its component MOLION, are good illustrations of the
design of the DENDRAL system and the general philosophy of modular and
flexible design that characterized the project. Little explicit formal theory
underlies these programs. However, their ad hoc character is their strength
when combined with program flexibility. Since so much of any scientist’s
knowledge is intuitive and judgmental, it cannot be readily formalized. Pro-
grams such as those we have just described nonetheless permit this knowledge
to be employed in useful ways. The processing speed and clerical superiority of
the computer in fact amplify, in many cases, the power of the scientist’s
informal knowledge. A particular case in point is the PLANNER’s analysis of
spectra taken from unseparated mixtures of estrogens, described in [49]. The
record-keeping and cross-checking demands of this task are too great to permit
a thorough job by hand, yet the program is able to identify correctly the
number and structure of compounds in mixtures.

3.4. Testing

If planning were perfect and generating were exhaustive, no spurious
solution candidates would be produced and no solutions would be missed.

DENDRAL: a case study 231

DENDRAL planning, however, is not perfect and so a testing phase is applied
to each candidate. There are two reasons why planning cannot be perfect even
in principle. First there may be tests that can only be applied to fully specified
solution candidates or to sets of them. Second there may be tests that are too
costly to apply in the planning phase but are not too expensive to apply
to the smaller set of solution candidates. Both these factors operate with
DENDRAL.

The program that tests the generator’s output has been called the PREDIC-
TOR because of what it does. The production rule version was written by
Buchanan in the late 1960s after a procedural version had been written. A
summary of that account was published as part of the story of how production
rules were chosen to encode knowledge for MYCIN:

The [DENDRAL] programs are knowledge-intensive; that is, they
require very specialized knowledge of chemistry in order to produce
plausible explanations of the data. Thus a major concern in re-
search on DENDRAL was how to represent specialized knowledge
of a domain like chemistry so that a computer program could use it
for complex problem solving.

MYCIN was an outgrowth of DENDRAL in the sense that many
of the lessons learned in the construction of DENDRAL were used
in the design and implementation of MYCIN. Foremost among
these was the newfound power of production rules. . . . [7, p. 81

This program is driven by a set of production rules that define a theory of the
behavior of compounds in a mass spectrometer. The production rules state that
structures of a given form will fragment in certain ways. They are thus like the
predictive rules used in PLANNER, except that the format is more general.
Given a set of productions, PREDICTOR applies them to a proposed structure
graph to predict what ions will be produced; the productions may be applied
recursively to all ion graphs they produce. The result is a predicted mass
spectrum that can be compared to the actual data from which DENDRAL
began. Structures that produce spectra in close agreement with the data are
ranked highly.

The situation-part of a PREDICTOR production describes a chemical graph.
The action-part of the production consists of a set of operations that alter the
graph to produce other graphs. The action-part may contain a complete
production as a component, so that some operations are performed condition-
ally. Thus the productions are strongly hierarchical. The operations that
PREDICTOR permits are any LISP functions; predefined operations define
fragmentations, hydrogen transfers, loss of neutral molecules such as water,
and means for computing relative abundances of the products of the fragmen-
tation processes. Section 3.4.2 provides more details.

The PREDICTOR control structure applies the production rules to a set of

232 R.K. Lindsay et al.

ions. First a molecular ion is constructed and placed as the only item on an ion
list. The set of productions is scanned, and each one that is applicable is
applied to produce one or more new ions that are then added to the end of the
ion list. When all applicable productions have been applied, the current ion is
put into the spectrum list and the next ion on the ion list is selected. Some ions
may arise from more than one fragmentation process. When all ions on the ion
list have finally been processed (or the maximum permitted depth of recursion
has been reached), the spectrum list then corresponds to a mass spectrum.
Each entry is an ion that has a mass or composition, and each has associated
with it a number that denotes its relative abundance. The abundances are
accumulated and normalized to produce the predicted mass spectrum.

The first class of compounds to which DENDRAL was applied was the
amino acids. In predicting the behavior of these compounds in the mass
spectrometer, it was assumed that every bond that could break, would break,
and they would do so one at a time. This assumption is the zero-order theory of
mass spectrometry, so-called because it takes into account no site-specific
information. This theory proved insufficient for other classes of compounds
although it is close to correct for the amino acids.

Intermediate versions of the predictor (early 1970s) used class-specific prod-
uction rules of the form described below. A later version, called MSPRUNE,
reverted to the half-order theory (Section 3.4.4) as a general predictive theory
in order to avoid the necessity of encoding class-specific knowledge or of
assuming that knowledge of all of the relevant classes had been encoded.
Another predictive program, called REACT, was added to the system to make
predictions about the reaction products that one would observe if each of the
candidate compounds were put in various chemical reactions [56]. Thus, just as
constraints may be inferred from data resulting from different techniques, tests
can be specified that use different techniques. In general, of course, the
precision of the interpretive or predictive form of knowledge, and the ease of
specifying each, will determine whether knowledge is used for constraining a
generator or testing its results.

3.4.1. Representation of chemical graphs
Each node of a chemical graph is given a number and a name. These are

redundant and both exist only for reasons having to do with LISP conventions,
but we include both in our examples so that they correspond to program
listings. The node is described by indicating the type of atom, its connectivity
to other nodes, the number of unsaturations (double bonds) from the node
(these are called “dots” because dots are used in diagrams to stand for
electrons, a pair of which can make an additional bond) and the number of
hydrogens attached to the node. Connections are indicated by a list of node
names enclosed in parentheses. The entire node description is enclosed in

DENDRAL: a case study 233

parentheses. Finally the list of nodes defining a structure is enclosed in
parentheses along with the name of the structure.*

To illustrate, consider C,H,OH. We arbitrarily use the number of a node as
its name:

NODE DIAGRAMS

6=7 H H
/ \ C=C

5 l-2 / \
\ / HC C-OH

4-3 \ /
c-c
HH

Atom
name

Atom

type

Node
number

Neighbors Dots Number of
hydrogens

Cl C 1 (2 3 7) 1 0
02 0 2 (1) 0 1
c3 C 3 (1 4) 1 1
c4 C 4 (3 5) 1 1
c5 C 5 (4 6) 1 1
C6 C 6 (5 7) 1 1
c7 C 7 (1 6) 1 1

The complete notation is (spacing on the page is irrelevant and is chosen for
readability):

(PHENOL
(Cl c 1 (2 3 7) 1 0)
(02 0 2 (1) 0 1)
(C3 c 3 (1 4) 1 1)
(C4 c 4 (3 5) 1 1)
(C5 C 5 (4 6) 1 1)
(C6 C 6 (5 7) 1 1)
(C7 C 7 (1 6) 1 1))

‘The original representation of a chemical graph was as a LISP list with sublists indicating
branching. A second notation was as a list of LISP atoms [for example, (Cl, 02. C3)]. each with
its own property list indicating the properties of NEIGHBORS, NUMBER OF HYDROGENS,
DOTS, etc. The representation described here is faster and more compact because it uses fixed
positions in lists instead of explicit names and values. Note that there is some redundancy in the
connection tables regarding numbers of neighbors, “dots”, and hydrogens for an atom with a given
type. This was done to decrease computation time. The representation used in CONGEN is a
compressed matrix representing the same connectivity information in a canonical form.

234 R.K. Lindsay et al

The same notation is used to describe classes of structures in which some of
the information is not completely specified and partial matching of left-hand
sides is required. In particular, substructures are defined in such a way that
their connections to larger structures are not uniquely defined. The symbol
“X” when used in a connectivity list denotes exactly one connection to a node
outside the subgraph. The symbol “--‘I means “don’t care”. When used in the
position of a node, “--” denotes zero or more connections outside the
substructure; when used instead of an integer as a dot or hydrogen-count
parameter, it indicates any integer value, including zero.

The alcohol substructure is X-C-OH, represented as:

(ALCOHOL
(Cl c 1 (2 x --) --)

(02 0 l(1) 0 1))

3.4.2. Representation of production rules
Each production consists of a situation-part and an action-part. The situa-

tion-part is a predicate, which is either true or false of the structure under
consideration. For example, the predicate ISIT (X) evaluates to true if X is a
substructure of the active ion, that is, the one to which the production is being
applied. The special argument-free predicates NIL and DEFAULT may be
used as the situation-part. NIL always evaluates to false; this predicate is used
to take a production out of action temporarily without actually deleting it from
the production set. DEFAULT evaluates to true if and only if all previously
tried productions have proved inapplicable,

Other situation-part predicates are specific to chemistry. DB(N, M) is true if
there is a double bond between nodes numbered N and M. WHERE(S) is like
ISIT, but returns a list of correspondences between atoms in S and in the active
ion if there is one. MISSING(N, M) is true if nodes N and M are not
connected. ON(S, N) is true if substructure S is contained in the active ion,
with node N substituted for any unspecified atoms in substructure S. ON, and
WHERE, where true, produce as side-effects an indication of all the mappings
from subgraph to active ion that constitute a match of the subgraph. This
information is available for use by functions in the action-part of the prod-
uction.

The action-part of a production is more complex, but is intended to use
names and descriptions commonly used for processes that occur in the mass
spectrometer. It may have more than one component. Each component may
itself be a production. A component also may be the name of a function that
will be executed, selecting its parameters from the current context. Finally, a
component may be a list of two or three functions specific to mass spec-
trometry. A break function produces new ions from the active ion and adds
them to the ion list. An intensity function determines an intensity for each

DENDRAL: a case study 235

newly formed ion. It may be a number indicating the relative abundance of the
parent ion to be assigned to the daughter ion, or a function that specifies how
to calculate an intensity. For example, a process may produce an ion whose
intensity is half that of the parent. A transfer function produces additional ions
according to rules of hydrogen transfer (or transfer of other radicals) but does
not add these to the ion list. (The transfer function is optional and may be
absent.) Each function list component has a label that is used in the output to
indicate the source of each spectral peak. The label is the first symbol in the
function list.

To summarize, a PRODUCTION is (SITUATION-PART ACTION-
PART).

A SITUATION-PART is one of the following three forms:

(1) (ANY LISP PREDICATE), for example, ISIT, WHERE, DB, ON,

(2) (NIL),
(3) (DEFAULT).

An ACTION-PART is a list of ACTION-PART COMPONENTS.
An ACTION-PART COMPONENT is one of the following three forms:

(1) (LABEL; BREAK-FUNCTION; INTENSITY-FUNCTION;
TRANSFER-FUNCTION (optional)),

(2) ANY LISP FUNCTION,
(3) a PRODUCTION.

The following production for estrogens is a production rule formulation of a
basic five-rule theory of estrogen fragmentation. The intensity function of each
component of the production is here the integer 100, which simply means that
any generated ion will be assigned 100 percent of the intensity of the ion from
which it derives. The estrogen production has five function list components;
each function list is associated with a particular break definition; the break
name is used as the label of its function list. The functions BREAKBND and
HTRANS are a break function and a transfer function, respectively, to break a
bond, or a set of bonds, and to transfer hydrogens. BREAKBND creates only
one charged fragment in each break, namely the one containing the first atom
of the first pair. Also, BREAKBND refers to the list of correspondences
created when the left-hand side was matched, in this case by the WHERE
function.

((WHERE ESTROGEN)
(B (BREAKBND((14. 15) (13. 17)) lOO(HTRANS -1 0))
(D (BREAKBND((9. 11) (14. 13) (16. 17))) lOO(HTRANS -2 -1))
(C (BREAKBND((9. 11) (14. 13) (15. 16))) lOO(HTRANS -1 -0))
(E (BREAKBND((ll. 12 (8. 14))) lOO(HTRANS -1 0))
(F (BREAKBND((9. 11) (8. 14))) lOO(HTRANS -1 0))

236 R. K. Lindsay et al.

A syntactically more complex production is one that defines McLafferty
rearrangement, shown in Fig. 2. The structures that undergo this rearrange-
ment contain the substructure named GRAFMC, shown below.

(GRAFMC
(1 c x (2 4 --) 1)
(2 -- x (1 --) 1)
(4 -- x (1 5 --))
(5 -- X (4 6 --))

(6 C X (5 -->>I

The production is labeled MCLAFFERTY. It corresponds to a mass spec-
trometric process that occurs in many cases and has thus been defined and
named so that it may be referenced in defining class-specific productions. The
situation-part of the MCLAFFERTY production is (WHERE GRAFMC).
The action-part of MCLAFFERTY uses six functions. Two of them, LAST-
ION and LASTINT, simply return the previous ion and its intensity, respec-
tively. Three of them MRRFGT, MRRFGT2, and MRRFGT3, produce the
required hydrogen migrations before performing breaks that produce new ions.
The final function, GAMMACLEAVAGES, produces (possibly) several ions
by producing all gamma cleavages.3 These functions were named for three
reasons: readability, explanation, and reusability. Each of these reasons is an
important design consideration in today’s expert systems, but this was not
obvious in the late 1960s.

The other subgraphs referenced in the MCLAFFERTY production are
defined in [37]. The integers used as intensity functions are interpreted as
before: the intensity of the generated ion is the indicated percentage of the

Fig. 2. McLafferty rearrangements. (Reproduced by permission. Source: G.W.A. Milne. ed.. Mass
$ectrometry: Techniques and Appkcations (Wiley, New York, 1971). Copyright 0 1971, John

Wiley & Sons, Inc.)

‘The bonds connecting a structure to a group are said to be alpha to the group. Bonds more
distant are called beta, gamma, and so forth.

DENDRAL: a case study 237

intensity of the current ion. The MCLAFFERTY production is

(MCLAFFERTY
((WHERE GRAFMC)

((WHERE GRAFMCMETHYL)
(MCLAFFCH3 MRRFGT3 100)
(MCLAFFERTY MRRFGT 200))

((WHERE GRAFDBLMCALPHA)
(DBLMCLAFF MRRFGT3 100)
(DBLMCLAFF MRRFGT2 100)
(MCLAFFERTY MRRFGT 200))

(DEFAULT
(MCLAFFERTY MRRFGT 200))

((WHERE GRAFMCS)
(MCLAFFERTY +l LASTION (LASTINT 10) (HTRANS 1))
(GAMMA GAMMACLEAVAGES (LASTINT 100)))))

Two of the functions used by these productions are (the definitions, of
course, are in LISP):

l GAMMACLEAVAGES
(1) Find all bonds gamma to node 2.
(2) Break each bond in turn.
(3) For each bond broken, create an ion containing node 2.
(4) Return the list of ions created.

. MRRFGT
(1) Migrate a hydrogen atom from node 6 to node 2.
(2) Break the bond between nodes 4 and 5.
(3) Return a list containing the ion containing node 4.

3.4.3. Ranking the candidate explanations
When there is more than one hypothesis consistent with the data, additional

tests are needed to discriminate among the candidates. Often this involves
additional experimental work. In DENDRAL we looked at two different kinds
of tests: those involving data point in the mass spectrum already in hand and
those involving additional data. Additional data might come from NMR,
C13-NMR, or from reaction chemistry as mentioned above. Here we just
explain the use of data in the mass spectrum that were not already used to infer
constraints for the generator.

Different models, or “theories”, of mass spectrometry can be used to predict
the fragmentations of a molecular skeleton. The type of fragmentation theory
to be used depends largely on the context of the structure elucidation problem.
When one initially studies a new class of compounds, or when one attempts to
discriminate among different candidate structures obtained from some unusual
CONGEN problem, it is usually appropriate to use some universal form of

238 R.K. Lindsay et al.

fragmentation theory that expresses very general chemical principles. Although
a general theory will be applicable and will not be biased in its predictions, it
may well prove to have poor discriminatory power. Fine discrimination among
related structures generally requires more refined fragmentation theories
wherein one assigns different plausibilities to alternative fragmentation pro-
cesses. When processing isomers from some well-characterized class, the
appropriate fragmentation theory may well involve the detailed specification of
substructures, their bond cleavage processes, and the accompanying specific
transfers of hydrogen atoms or other molecular fragments.

In the following subsection we show how even the most general “half-order”
fragmentation theory can serve to discriminate among isomers of moderately
complex structures such as monoketoandrostanes. (The skeleton of this class is
illustrated in Fig. 3.) Refinements of the simplest half-order theory involve,
first, the use of estimates of relative plausibilities of fragmentation processes of
differing degrees of complexity and, subsequently, the association of relative
plausibility values with some classes of bond cleavage.

3.4.4. The half-order theory of molecular fragmentation
The simplest model of molecular fragmentation is the ALLBREAKS, or

zero-order, “theory” that predicts ions arising from all possible bond cleavages
and combinations of cleavages and transfers of atoms between fragments. Such
a model is too general for almost every problem in computer analysis of mass
spectra. (However, the zero-order theory was the method of spectrum predic-
tion in the first application of Heuristic DENDRAL to amino acids.) DEN-
DRAL’s “half-order theory” of mass spectrometry is a constrained version of
the ALLBREAKS model of molecular fragmentation: virtually any bond is
broken subject to the constraints listed. The half-order theory is a very loose
model that constrains a set of possible processes to those that are more
plausible. It still does not represent a comprehensive model of fragmentation.

The constraints that can be expressed in the half-order theory include

Fig. 3. Monoketoandrostane skeleton

DENDRAL: a caxe study 239

limitations on the number of bonds that may be broken and the number of
allowed hydrogen transfers into or out of the charged fragment. Each predicted
ion is formed by a “process” involving (1) one or more cleavages of the graph
into two parts, (2) possible H-transfers, and (3) possible losses of neutral
fragments. Each cleavage may be a break of one acyclic bond, two bonds
within a ring, or a group of three bonds in an edge/fused ring system. One
complete process shown in Fig. 4 would, for example, involve fused ring
cleavage, simple ring cleavage, and acyclic bond cleavages; such a process
would involve a total of six bond breaks. To summarize, the constraints used
with the half-order theory include:

(1) Allow cleavages or pairs of cleavages each involving one or two single
bonds, with not more than three bonds in total. Do not break double or
triple bonds, or bonds in an aromatic ring.

(2) Prohibit the cleavage of two (non-hydrogen) bonds from the same
carbon atom (for this cleavage would formally leave a fragment that is
normally energetically unfavorable).

(3) Restrict transfers between fragments to at most two hydrogen atoms.

A simple use of the half-order theory for testing is implemented in the
MSPRUNE function. MSPRUNE helps a chemist reject CONGEN structures
by estimating the difficulty of determining the origin of any specific ion in the
spectrum from each of the candidate structures. Even in this very limited form,
the half-order theory can be of value in helping to identify candidate structures
compatible with spectral data. For example, a simple ring cleavage and
hydrogen transfer are a simpler explanation than cleavage of a fused ring
system. MSPRUNE uses such differences to eliminate candidate structures

WI.
Generally, we have found it to be more effective to employ the data in the

entire observed mass spectrum, and rank candidate structures according to how

Fig. 4. Complex break process.

240 R. K. Lindsay et al

well they serve to explain the spectral data. This ranking is accomplished
through the MSRANK function, which allows the user to define the constraints
of the half-order theory and to specify the form of the scoring function. The
score assigned to a candidate structure is determined from the importance
accorded to those of the observed ions that can be generated by the allowed
fragmentations of that candidate. As ions at higher mass and intensity values
are generally of greater structural significance, degrees of importance are
accorded to each observed ion in the spectrum by some function of its mass
and intensity.

4. Results and conclusions

As has been emphasized, no one program is called DENDRAL. It should
also be clear that DENDRAL is not a special-purpose system for solving just a
few specific problems in chemistry. Heuristic DENDRAL is a framework for
helping chemists with structure elucidation problems in various ways. Some of
the knowledge embodied in the system, such as the stability knowledge
codified in the a priori GOODLIST and the a priori BADLIST, is general.
This is also the case for the basic mass spectrometry theory that is embodied in
the PLANNER and PREDICTOR programs. The class-specific and problem-
specific chemical knowledge used by Heuristic DENDRAL is supplied by the
chemist-user; the programs, however, are intelligent enough to understand
such specifications and make use of them.

In addition to being a mass spectrum problem-solving engine of various
configurations, the programs can be used in a more general vein as aids to
chemists with structure elucidation problems. CONGEN, for example, is a
symbolic graph manipulator for the chemist, analogous to algebraic and
analytic symbolic manipulators for the mathematician, such as REDUCE [22]
and MACSYMA [38].

4.1. CONGEN results

Of all the DENDRAL programs, CONGEN (later extended and renamed
GENOA) is clearly the most generally useful and has been applied to current
research problems by several chemists. The range of problems to which
CONGEN is applicable is great although only a few dozen applications were
made by the Stanford Group. Each of these is a relatively specialized problem
whose importance is only clear in the context of a larger chemical issue.

Applications of CONGEN are no longer under close supervision by DEN-
DRAL project members. This fact speaks for the maturity of the program but
makes it difficult to enumerate problems to which it has been applied. It works
well on “medium size” problems in which it is combining eight to ten atoms

DENDRAL: a case study 241

and superatoms at a time. If the chemist has interpreted data in terms of large
superatoms (along with other constraints) then the program can manage
structures with on the order of 100 atoms.

The final number of structures is strongly dependent on the chemist’s ability
to aggregate separate atoms into superatoms and infer other structural con-
straints from the available data. Because of the subtle and powerful interac-
tions among constraints, it is difficult to estimate the final number of structures
that will be produced. Nevertheless, a user can interrupt CONGEN at any time
to request an estimate of the number of structures remaining to be generated.
Although the estimates are rather crude, they are valuable for indicating that
the program needs more constraints, for example, if 200 structures have been
generated and CONGEN estimates that it is only 5 percent finished.

Much of the collaboration with other chemists has been informal and has
been undertaken with the dual expectation of providing useful service while
leading to new CONGEN research areas. Some examples of problems are
listed here to give a sense of the range of structures for which CONGEN has
been of service.

(1) Chemical constituents of body @ids (e.g., organic acids, amino acids).
Generate structures within constraints derived from knowledge of
chemical isolation procedures and human metabolic processes to identify
compounds in the gas chromotogram/mass spectrum traces of patients
with suspected metabolic disorders of genetic origin.

(2) Terpenoids. Generate structures within constraints (including four to six
large superatoms) to identify Cl5 and Cz,, compounds isolated from
natural sources. These were also tested to see if candidate structures
obeyed the isoprene rule that restricts interconnections of 5-carbon
superatoms [13, 521.

(3) Marine sterols. Determine the sterols (within numerous constraints) that
could be metabolic precursors of known sterols in marine organisms in
order to guide identification of unknowns.

(4) Insect secretions. Confirm the structural possibilities in problems involv-
ing the identification of insect hormones and other insect defense
secretions.

(5) Rearrangement products. Obtain all structural possibilities under avail-
able constraints to help solve the structures of chemical and photochemi-
cal rearrangement products of unsaturated hydrocarbons (e.g., a tricyclic
C, , H,, hydrocarbon) and polycyclic molecules [.55].

(6) Zon structures. CONGEN has also been applied to the problem of
generating the structures of gaseous ions. This application has been
done, for example, for the case of triethylamine, (CH3CH,),Nt-. See
[53] for an explanation of the underlying mass spectrometry fragmenta-
tion mechanisms of this and related compounds.

242 R. K. Lindsay et al.

(7) Pharmacologic agents. CONGEN has been used to help solve the
structures of several compounds displaying pharmacologic activity in-
cluding some nitrogen heterocycles, pesticide conjugates, and metabolic
products of microorganisms.

4.1.1. Status
This project was specifically conceived because it addressed the AI problem

of understanding scientific reasoning in the context of an important and
ubiquitous practical problem in organic chemistry. It was developed initially by
the members of the team oriented to computer science. After several years of
transition, it was transferred to computationally oriented chemists on the team
with a continuing view toward making it a practical and usable system.
Eventually, after more than 15 years of intense academic effort, the DEN-
DRAL programs were licensed by Stanford to a commercial concern marketing
software to chemists. The ideas had been refined and tested in the academic
environment beyond the point of justifying continued effort and funding on the
basis of research. Moreover, a commercial company is usually a more effective
organization for technology transfer than a university, and we hoped DEN-
DRAL would be widely used. We know it was, in our hands, a useful tool for
the chemist solving structure elucidation problems in its symbiotic (CONGEN/
GENOA) form, and that its performance rivaled that of non-expert chemists in
its full (plan-generate-test) form on classes of compounds for which it
possesses the requisite knowledge. Efforts were made to make the programs
usable and “friendly” to working chemists. Nonetheless, the impact of these
programs on the conduct of organic chemistry has been quite limited. It is
likely that few chemists even know of the existence of the programs. Only a
few laboratories have made use of the whole system.

A version of GENOA (re-written in the C language) is commercially
available,4 but as of this writing development work on it has not been done for
many years. Parts of the DENDRAL system such as algorithms for matching
substructures are used commercially, for example to search a drug company’s
library of compounds for those that contain a biologically active substance.

There are of course a host of difficulties facing those attempting to transfer
technology from the research laboratory to application, even when the applica-
tions themselves are to research problems carried out by other researchers
sympathetic to these issues. However, there are also some limitations of
DENDRAL that go beyond the usual problems of technology transfer. In
brief, the system best handles smaller problems for which expert chemists need
less assistance. The expert chemist can still reduce many problems that are
beyond DENDRAL’s scope to manageable, paper-and-pencil problems.

’ Molecular Design, Ltd., 2132 Farallon Drive, San Leandro, CA 94577, USA.

DENDRAL: a case study 243

There are some important qualifications that must be made to the preceding
observation. In the first place, expert systems are often developed to be of
assistance to the less-than-expert practitioner. Thus they may be valuable in
the sense of making available a level of performance and ability that falls short
of, or at best rivals, their best human counterparts, as when electronic
troubleshooting skills are made available to new field service personnel.
However, this does not seem to be a useful niche for DENDRAL; the difficult
structure elucidation problems are those faced by the experts, and the easier
problems that require solution, for instance in routine medical applications
such as identification of toxic substances, are frequently solvable by other
methods such as library search. DENDRAL is not useful for the largest, most
difficult problems for which experts want assistance.

There is another role that DENDRAL may play. That is the role of solution
checker. Since the DENDRAL generator is thorough in its consideration of
the constraints provided by the data, if it were to rule out a solution “found”
by a chemist, that would with certainty indicate an error either in the analysis
by the chemist or the statement of the constraints. Closely related to this
function is the role that DENDRAL can play in discovering alternative
solutions not found by the chemist. Since DENDRAL’s generator is merciless-
ly exhaustive in its consideration of alternatives, it may well find solutions that
are consistent with the given constraints but were not considered by the
chemist. Of course it may be the case that the chemist’s own analysis employed
constraints or other knowledge that was not explicitly reported or that could
not readily be formulated in DENDRAL’s constraint language. In an informal
study of about a dozen published papers, DENDRAL often did discover
alternative solutions using the published constraints. However, in all but one
case the right solution (as determined by additional experimental data) was the
one the chemist found. In the lone exception, the chemist recognized a few of
DENDRAL’s alternative solutions as potentially correct although he had
overlooked them. These observations suggest that routine checking of solutions
before publication could improve the accuracy and completeness of published
reports and raise confidence in them. Whether this would be a worthwhile
application depends on the costs of the computation involved, among other
factors.

The model of use implicit in the CONGEN/GENOA systems is that a
chemist will bring to the program a body of data about an unknown compound,
will transform the data into a set of generator constraints, and will then wait
for a list of possible solutions. In practice, if the generator produces only a few
candidates the problem was possibly easy enough that the chemist would have
succeeded unaided. If the candidates number one thousand or more, the
problem remains virtually unsolved. It is only when perhaps a dozen to a
hundred candidates are generated that the program has made an important
contribution. This is a rather small window. Without computer assistance, the

244 R.K. Lindsay et al

chemist will not know exactly how large the space of remaining candidates is,
but will be quickly aware if it is unmanageable. In that case, more data are
sought. If that is not possible, data may be “invented”; that is, the chemist
assumes that the compound must satisfy other plausible though unproven
constraints, such as being a member of a particular class of compounds
(perhaps because all compounds from the same source are members of that
class).

Seemingly, DENDRAL would assist in this sequential model as well, by
relieving the chemist of the burden of generation at each step, while guarantee-
ing completeness. The generation is modular; that is, additional constraints can
be applied to a candidate set to further reduce it without regeneration de novo.
We do not know why this strength of the CONGENiGENOA model is not
marketable.

There is a related way in which DENDRAL could help, namely by assisting
in the selection of new data. For example, the candidate set could be subjected
to “what if” experiments. What if we knew that the compound was of class C;
how many candidates would remain? What if it contained substructure S; how
many candidates would remain? The constraint that would most greatly reduce
the candidate set would then determine the next piece of laboratory work to be
done. Unfortunately, DENDRAL offers the user little assistance with this
method (although some preliminary work on this problem was done).

We summarize with some speculations on why DENDRAL is not used more
widely:

(1) Chemists do not know it exists.
(2) The hardware/software are too expensive.
(3) The chemist does not wish to invest the time to learn the system.
(4) Exhaustive generation is not seen as essential to the structure elucida-

tion problem.
(5) An attitude that “That is not the way it is done”, or that a tool “not

invented here” is not worth using, or that “Machines can’t think; that’s
my job”.

(6) The chemist and DENDRAL do not collaborate intensively over a long
period of time (much of the chemist’s time is spent in the lab); so, like a
fire alarm, its value is underestimated.

(7) DENDRAL is not cost-effective for any single individual (though it
may be for an entire company).

(8) Chemical and pharmaceutical companies do not cooperate and share
resources.

(9) Pieces of the DENDRAL system, e.g., structure-matching algorithms,
were easier to market than the whole system.

(10) The niche that DENDRAL fills is not perceived by chemists as
important enough to warrant use of the system.

DENDRAL: a caSe study 245

4.2. Lessons for the implementation of intelligent systems

DENDRAL is an extensive case study of one of the first knowledge-based
programs. Because it is a direct progenitor of MYCIN, and thus of today’s
expert systems, the development of DENDRAL is historically significant. It is
designed around the exclusion paradigm of problem solving in which all
implausible answers are excluded from a complete solution space, leaving only
the plausible ones. It is implemented within the programming structure of the
plan-generate-test paradigm. The performance of DENDRAL illustrates the
power of this paradigm. It also clearly points to a number of details of this
methodology that deserve careful consideration in its application. The exist-
ence of the generator is a sine qua non. Before the dendritic algorithm, there
was no unique naming convention and no generating function that guaranteed
complete, non-redundant coverage of the space of topological descriptions of
chemical structures. Not every application has such a generator; most do not.
The invention of one may require considerable intellectual effort.

A generator of English sentences might be briefly considered as a generator
of hypotheses in some problem areas. The main drawbacks, however, are that
(1) there are far too many legal sentences containing, say, fifty words or fewer,
(2) there is no guarantee that the solution would be describable in a sentence
of any arbitrarily fixed length-it may require 51 words, for example-and thus
there is no decision procedure for problem solving, (3) the obvious ways of
generating sentences are purely syntactic, yet information available for con-
straining the generator almost certainly carries semantic content.

Some specific lessons we can suggest are the following:

Lesson 1. The efficiency of the generator is extremely important. Even with
effective planning and testing, the power of the problem solver will often be
limited by how quickly candidate solutions can be enumerated. It is particularly
important that constraints can be applied effectively.

One interesting improvement in CONGEN involves spending a little extra
time at the beginning of a session to save enormous amounts of time later.
There are numerous, logically equivalent ways of specifying constraints to
CONGEN that differ greatly in efficiency. It is unreasonable to expect a
chemist using CONGEN to be familiar enough with the program itself to know
which specifications are more efficient than others. (It is also unreasonable to
ask the chemist to seek advice every time from one of the local CONGEN
experts.) Thus a “smart interpreter” of constraints was developed [20]. The
goal is to have it accept the chemist’s statement of the problem and understand
both the chemistry and the computational procedure well enough to transform
the given constraints into an equivalent, more efficient set of specifications.

Lesson 2. The use of depth-first search, which provides a stream of candi-
dates, is generally better (in an interactive program) than breadth-first search,
in which no candidates emerge for examination until all are generated. To a

246 R.K. Lindsay et al.

programmer the two methods are equally easy to implement. To a chemist
waiting for help with a structure problem the difference is substantial. It is far
more pleasing to see some answers quickly, and it is more efficient in those
cases where the first few answers reveal mistakes in the problem specification.
In those cases, the chemist can interrupt the program, change the constraints,
and restart.

Lesson 3. Planning is in general not simply a nice additional feature but is
essential for the solution of difficult problems. As much knowledge as possible
should be brought to bear at this stage rather than at the testing stage, because
this point is where the search can be cut drastically.

Lesson 4. Every effort to make the program uniform and flexible will be
rewarded. The user should be provided with as many options as one can think

of (with defaults established to remove the burden when the flexibility is not
needed). Every decision strategy and parameter that is hardened into the
program will become a limitation not open to examination or easy modification
and not easily remembered.

Lesson 5. An interactive user interface is not merely a nicety but is
essential. For a high-performance computer program to capture the sustained,
widespread attention of working scientists, it must contain a large number of
features that make it easy and pleasant to use. These features are commonly
termed “human engineering aspects” of a program. In very rare instances, a
program will be so useful that it will be widely adopted even without proper
attention to human engineering. More often, programs that are understandable
only to programmers are used, if at all, only by programmers.

The prompts and descriptions printed by the DENDRAL programs have
been designed by chemists to be terse, informative, objective, and courteous.
These are not always consistent goals, but with careful attention the dialogue
can be free of flagrant affronts to our feelings. Along the same lines, it should
be noted that a person’s right to privacy cannot be ignored in scientific
programs. In CONGEN we rely on the standard protection mechanisms built
into the computer system, but we will need more security if we are to satisfy
users in chemical industries.

Lesson 6. An interesting extension of the plan-generate-test paradigm
could improve its power: search and generation might be combined into a
single problem solver. In the context of DENDRAL this combination would
mean that the generation of isomers would be guided by a search through a
related problem space. The problem states would most naturally be chemical
structure graphs, and the transformations would append, delete, and rearrange
constituents. A proposed alteration would be considered for its effects on the
mass spectrum, and a hill-climbing technique, for example, might drive the
search. Successful (“warming”) modifications would become GOODLIST
constraints on generation. Numerous variations on this theme can be en-
visioned. We briefly explored hill-climbing methods and the use of an evalua-

DENDRAL: a caxe study 247

tion function to give us best-first search, but here our focus on mass spec-
trometry kept us from developing these ideas. We wanted to guide the search
by comparing predicted partial spectra (from partial structures) with the
original spectrum, and then adding more structure so as to reduce differences.

Goal regression has been proposed [24] as a way of modifying a hypothesis
to improve its predictive accuracy. In this model, the difference between
observed and predicted data focuses the search for modifications that will
reduce the difference. Something like this model was explored briefly for
DENDRAL in the following form:

(a) Given an observed mass spectrum MS, and a candidate molecular
structure S,

(b) Predict a mass spectrum MS, for S,
(c) Analyze the difference between MS, and MS,,
(d) Adjust S to minimize that difference.
The problem that we encountered was that we lacked GPS-like difference-

reducing operators. We were unsuccessful in finding any in mass spectrometry
because very small changes in molecular structure may cause very large
changes in the distributions of mass spectrometry processes, with correspond-
ingly large changes in the resulting spectra. Thus we had to rely on forward
generation of alternatives without benefit of back-propagation of useful adjust-
ments.

Lesson 7. Choice of programming language is becoming less of an issue. We
originally did not have access to a language that combines the flexibility and
debugging power of LISP with the running speed and exportability of C, for
example. This language conflict causes a dilemma at the start of a large
programming effort whenever the designer hopes for widespread use of the
resulting program. Networking provides a partial answer to the exportability
question, since widespread use can be accomplished by long distance sharing of
a complex program. The increased efficiency and availability of LISP also
make this issue nearly irrelevant now.

Lesson 8. Providing assistance to problem solvers is a more realistic goal
than doing their jobs for them. In the first place it removes some of the
psychological barriers that people often exhibit toward machines. Also, the
amount of work involved in automating the whole task may far outweigh the
benefits and in any case will delay the appearance of any benefits considerably.

Lesson 9. Record keeping is an important adjunct to problem solving. Every
laboratory assistant is expected to keep a good laboratory notebook: the same
should be true for a computer apprentice. Of the many ways of realizing the
goal of helpful records, only some have been explored in the context of
DENDRAL.

We did not provide interactive explanations. But we did expect the DEN-
DRAL programs to provide three different kinds of notes to back up its
reasoning from initial data and constraints to ranked hypotheses:

248 R.K. Lindsay et al.

(a) a record of initial conditions, intermediate conclusions, and final results;
(b) a complete record of the interaction between chemist and program

(including erroneous entries and typing mistakes);
(c) a trace of the program’s reasoning steps.
Lesson 10. In order to use a program intelligently, a user needs to under-

stand the program’s scope and limits. The scope, roughly, is the broad class of
problems that the program is designed to solve and the context in which
solutions will be found. The limitations of a program are those aspects that
create exceptions to perfect performance over the whole scope. For example,
enumerating polymeric structures is outside the scope of CONGEN, while its
working definition of aromaticity is a limitation that is more easily changed.
Operationally, the scope is the broad definition of the problem that can only be
changed at the cost of writing an entirely new procedure. The limitations are
the explicit and implicit items in the problem definition that are added to make
the problem solvable and that may be changed or removed more readily. It is
not a sharp distinction; the point is that a chemist needs to understand the
program’s interpretation of the problem-its implicit and explicit
assumptions-before it can be used responsibly and confidently.

Lesson 11. The context in which problem solving proceeds is essential
information for interpreting the solutions. The more an assistant can make
explicit the assumptions and initial conditions of a problem, the easier it is for
an investigator to understand the answers. This has always been true, but the
emergence of computer programs as assistants brings the problem clearly into
focus. The only step we have made along these lines with DENDRAL
programs is to keep a good laboratory notebook, as described above. One of
the items we try to make explicit at the time problem solutions are printed is
the set of assumptions under which the program arrived at those solutions.

Lesson 12. DENDRAL employs uniformity of representation in two senses:
(a) in the knowledge used to manipulate chemical structures, and (b) in the
data structures used to describe chemical structures and constraints. In the
knowledge base, uniformity is important as a means of understanding and
conveying the contents of the knowledge base as well as in problems of
acquiring new knowledge. In DENDRAL, knowledge is uniformly represented
in a very general form: production rules. The uses to which the knowledge is
put, however, are many. This arrangement achieves the best of both worlds:
we have uniformity of representation with its virtues of modularity, simplicity
of control structure, and perspicuity, and we have the inherent power of
multiple sources adding to and making varied uses of the common knowledge
base.

In the underlying data structures, uniformity is important for program
efficiency and ease of program development. We were fortunate to have found
just the “right level” of abstraction of chemical molecules in terms of graphs.
The ball and stick model of molecules and its analogous graphical description

DENDRAL: a case study 249

are grossly inadequate for many purposes but they were quite adequate for the
reasoning that DENDRAL needed to do. It is a convenient shorthand for what
chemists know about chemical bonding, and thus was readily understandable.
However, it did require doing some new mathematics, graph theory and group
theory in particular, in order to design correct algorithms, e.g., to generate
ringed structures without duplication of symmetric graphs.

To summarize: successful problem solving in nontrivial domains (1) requires
surprisingly large amounts of specialized as well as general knowledge, (2)
requires different forms of organization for different tasks, and for different
purposes within a given problem domain, (3) requires the productive inter-
action of this knowledge, not merely its accumulation, and (4) can benefit from
representation schemes that bear part of the burden of the inferential process.
For these reasons, which have the status of empirical propositions about
cognitive systems generally and human minds specifically, we conclude that the
current emphasis on knowledge engineering within AI, for which DENDRAL
is a key example and important case study, is both central and prerequisite to
the development of artifacts of general intelligence.

4.3. Project organization

There have been few successful, long-term interdisciplinary projects in the
history of science, but we believe DENDRAL should be counted among them.
The project worked cohesively for a decade, and it involved productive
interaction of researchers from the disciplines of chemistry, computer science,
genetics, philosophy, physics, mathematics, electrical engineering, manage-
ment science, and psychology.

It is difficult to give a recipe for this success, but we believe we can list some
important ingredients. First, the task was conceived in such a way as to appeal
to many interests; it could have been described as a “pure” mass spectrometry
problem, or a “content-free” hypothesis formation problem, but it was not.
This task is not prohibitively difficult: it can be understood (with a moderate
effort) by anyone with a modest technical background. One scientist, with
knowledge of both chemistry and computer science, was willing to coordinate
and arbitrate the often-conflicting efforts of the group, and was able to do it
because others felt sufficient respect for his ideas and vision to sacrifice some of
the traditional autonomy and rugged individualism of scientists. The project
leaders were skilled managers who had learned to delegate responsibility
through management of other academic organizations. They also shared a
willingness to take risks with unproven personnel. Not the least important, a
natural selection occurred, resulting in a staff of specialists each of whom was
truly willing to go more than half way to understand the other’s discipline,
paradigms, and arcane jargon.

There was also a genuine desire among the computer science personnel to

250 R.K. Lindsay et al.

create programs of value to chemists on the way to solving the big problem.
Although many of these utilities did not use AI methods, they provided
tangible benefits to the chemist collaborators whose assistance was essential.
This piece of common sense (“quid pro quo”) is missing in projects that “skim
the cream” in a new problem area and that have left colleagues disgruntled
about AI.

We may offer no magic advice here, but the lessons are important, and
mistakes are costly. Interdisciplinary work is antithetical to most scientists, no
matter how wistfully they long for it. It is expensive folly to establish a project
or institute and fill it with scientists from a variety of disciplines, selected only
on the basis of scientific credentials. Without leadership, specific common
goals, mutual empathy, human consideration, and a great deal of effort, the
result will be a collection of scientists none of whom has a colleague. Finally, it
should be noted that it is not easy to get funds for a large, interdisciplinary
project. It is important to find a sponsoring agency that is willing to invest in
long-term research, because continuity is critical.

4.4. Knowledge engineering

One major thrust of this work has been the exploration of methods for
acquisition, representation, and use of knowledge. We have referred to the
design of such methods as knowledge engineering, which is the basic engineer-
ing aspect of the work.

At the time of inception of the DENDRAL Project, the major emphasis of
most AI research was a search for general methods of problem solving.
Relatively little effort was devoted to the design of systems that embodied and
used specialized knowledge. The paradigm case of the search for general
methods was research on the resolution method of proving theorems in the
predicate calculus [46] as applied to a variety of problems, for example robotics
[45], by a number of computer scientists. There were other important elabora-
tions of this theme, for example the General Problem Solver [15]. There were
also some exceptions, projects in which emphasis was placed on exploiting
specialized knowledge (e.g., [34]). Ch ess and checker programs are also good
examples, as are symbolic mathematics aids such as MACSYMA [38]; such
work, however, was in the minority. Mass spectrometry was not an area of
strength for Buchanan and Sutherland. Thus the time-consuming and error-
prone dialogue between Buchanan and Duffield forced development of styles
and tools that are also now commonplace.

The situation today is different. Many significant projects can best be
characterized as the development and application of knowledge-based systems.
The success and example of the DENDRAL project in all likelihood played an
important role in the establishment of the new emphasis in AI, though it was
not the only force acting in this direction. We now are more convinced than
ever that the design of knowledge-based systems is an important emphasis.

DENDRAL: a cafe study 251

We take it to be self-evident that problem solving in a specific task domain
requires special knowledge of that task domain. This was not contested, merely
not emphasized, in early AI work. In a predicate-calculus-based system,
specialized knowledge was encoded in the axioms, the theorem-proving proce-
dures, and the criteria of interest; it was not ignored. In the General Problem
Solver, specialized knowledge was encoded into the definitions of the problem
space and transformations; it was not ignored. What was not fully appreciated
was the sheer amount and variety of such knowledge underlying intelligent
behavior. General methods went awry when the unavoidable profusion of
specialized knowledge swamped the heuristic methods and, further, outran the
abilities of the programmers to encode it all. This breakdown happened as
soon as attention was directed away from highly abstracted, simplified “toy”
problems toward applications of utility outside AI itself.

A surprisingly large amount of specialized knowledge is needed to achieve
expertise in even a very circumscribed field. The fact that long periods of time
are required to become an “expert” is evidence that expertise is knowledge-
intensive. For example, Simon and Barenfeld [48] present evidence that the
difference between expert and novice chess players lies almost exclusively in
their differing degree of familiarity with commonly occurring patterns of chess
pieces. This familiarity is reflected in speed of recognition and ability to recall,
and is acquired by extended experience. It is estimated that the chess expert is
familiar with between 10,000 and 100,000 such patterns, which is also the range
of the word-recognition vocabulary of a fluent speaker. In addition to pattern
familiarity there is a host of other knowledge that novice and expert alike must
share, and that passes unnoticed in a casual analysis of game playing. This
knowledge includes, for example, contextual information about the nature and
purpose of games and of competition generally. In the case of mass spec-
trometry, the knowledge base includes not only specialized knowledge of
technique, but a large amount of information about the underlying subjects of
chemistry and graph theory, any portion of which may profitably be brought to
bear in the solution of a particular structure elucidation problem. A prerequi-
site of successful performance by DENDRAL was the encoding of significant
portions of this knowledge base, a job that has taken thousands of man-hours.

To gain sufficient problem-solving power in the face of the needed quantity
of knowledge, a knowledge representation scheme must be sufficiently special-
ized; making it so is a major part of the engineering problem. Consequently,
successful knowledge engineering initially requires decisions about knowledge
representation; in particular, specialized representations for specialized appli-
cations. A representation that is uniform for all tasks is doomed to impotence
in problem-solving power, although we have argued previously that uniformity
of representation has significant advantages, within a given task and for a given
purpose. Thus the basic representation used by DENDRAL, chemical graphs,
is, we have noted, the glue that holds the system together and permits various

252 R.K. Lindsay et al.

qualities of knowledge to combine effectively. However, chemical graphs are
manifestly not the appropriate knowledge representation for chess, or speech
understanding, or quantum mechanics. Furthermore, even though it is conceiv-
able, though unlikely, that some form of graph structure will suffice for
encoding all knowledge (just as it is conceivable though unlikely that some
linear logical calculus will suffice), it appears that the requirements of any given
problem domain are so specialized that the appropriate form of graph will be in
turn so specialized as to diminish seriously the importance of whatever insight
such a commonality of language might hold. Therefore, knowledge representa-
tion takes on a status equal to that of heuristic reasoning in the struggle against
combinatorial complexity.

To elaborate: the goal of knowledge engineering is to achieve a productive
interaction of knowledge in the service of problem solving. An appropriate
knowledge representation is an encoding that relates information that is
naturally related in important ways in the referent application area. Further, it
ought to do so in ways that ease the burden of inference [33, 341, just as
class-subclass inheritance hierarchies can facilitate inference. To the extent
that a measure of the inferential burden can be borne by the representation
scheme, we have reduced the burden that must be borne by search and
generation heuristics [35].

There has been a recent emphasis on “architectures” for general in-
telligence, as illustrated by [41, 47, 541. These are attempts to incorporate
knowledge representation, acquisition, and use into general problem-solving
frameworks. In these systems, as in expert systems research, generality is
sought by attempting to devise machines that apply general inferential mecha-
nisms to the specialized knowledge that is acquired and represented.

It is worth noting that none of these proposed architectures could, in any
very obvious or direct way, learn to behave as the DENDRAL generator,
which is the central feature of the DENDRAL programs. That particular
special form of knowledge, an algorithm specifically designed to work on the
class of chemical graphs, is indeed specialized knowledge, but it is not itself
readily represented as productions, weighted connections, frames, scripts,
semantic networks or any of the other non-procedural forms of knowledge
representation that are the present currency of artificial intelligence [36].

4.4.1. How much does DENDRAL know?
It is frequently asked how much any knowledge-based system such as

DENDRAL “knows”. Unfortunately there is no straightforward answer to this
question, for a variety of reasons. For example. it has frequently been pointed
out that humans and, with qualifications, computers know in essence an infinite
number of facts (to cite one instance, we know the successor of any integer);
and yet our memories are finite. Also, any “piece” of knowledge is meaningful
only in a larger context of its use with other knowledge.

DENDRAL: a case study 253

Moreover, cognitive capacities can be represented in indefinitely many ways.
For example, we may assert that DENDRAL knows that the valence of carbon
is 4. Knowing this fact, however, presupposes that the concepts of valence,
atom, and a constellation of related concepts are also in some sense under-
stood. (Even so, DENDRAL’s concept of valence is clearly not the same as a
chemist’s, which is embedded in an even richer context of related knowledge.)
It is, furthermore, knowledge that is distributed throughout many subprograms
that define and manipulate chemical graphs or in some way make use of facts
such as “the valence of carbon is 4”. It would be nearly impossible to separate
those pieces of DENDRAL computer code that in one way or another are
associated with an understanding of valence from those that are not.’

In analyzing the issue of multiple representations of knowledge, the conven-
tional distinction between “knowing how” and “knowing that”, though itself
not precise, is a helpful starting point. Even when this division is possible,
however, it must be remembered that there exist many different but functional-
ly equivalent, and hence equally “knowledgeable”, programs that divide their
knowledge in different ways between processes and facts.

For these reasons and more, any list of what DENDRAL knows in terms of
concepts, facts, and processes is of limited descriptive power. Nonetheless, we
will attempt to classify the content of some of DENDRAL’s knowledge of
chemistry in the list below.

4.4.1.1. DENDRAL’s knowledge of chemical concepts and procedures
DENDRAL’s knowledge base of facts and concepts was complete enough

for many tasks, including the substantive one of generating all isomeric
structures, but was admittedly incomplete. It was, however, intended to be
extensible by using rules, lists, and tables, and values of LISP atoms or
attributes. For example, only the half-dozen chemical atoms that most fre-
quently occur in organic compounds were known, but any others could easily
be added by editing one list of chemical atoms to be considered plus the
property list of each new chemical atom. Some of the lists contained names of
LISP functions to be used as special-purpose constraints (e.g., to see if a
proposed structure violated the principle of stability known as Bredt’s rule), or
as descriptions of processes that occur in mass spectroscopy (e.g., elimination
of water). These were more complex procedures than made sense to decom-
pose into productions, and that were treated as named primitives by chemists
anyway.

Perhaps it is obvious, but extensibility was considerably easier in the places
where we only needed to edit lists and tables. When new LISP functions

‘Some of the programs have been more meticulously written in this regard than others. For
example, INTSUM always references the valence of chemical atoms through a single function.
However. the more general concept of connectivity of graphs, which subsumes valence. is part of
the whole framework assumed by almost all functions.

254 R.K. Lindsay et al

needed to be created to serve as functional primitives we attempted to
generalize the functions so they could be used in other ways and to consolidate
old functions with new ones to create reusable code. When completely new
capabilities were considered, such as generating ringed structures, we often
found we needed to rethink the design and implementation of large sections of
code.

This obvious principle evolved from the need to develop a computable
theory of stability (BADLIST) interactively, and from the difficulties we
encountered in changing code to overcome experts’ criticisms of the program’s
performance.

(1) Knowledge of chemical graphs:
l Atom types (C, H, N, 0, P, S), along with essential properties of

each atom: valence, atomic weight, isotopes, relative abundance of
each isotope.

l Bond types (single, double, triple, aromatic).
. How to:

-Generate all acyclic and/or cyclic isomers (including fused rings,
Spiro forms, etc.).

- Compute the degree of unsaturation (number of double bonds and
rings) from an empirical formula.

- Compute the mass of a collection of chemical atoms (empirical
formula of a molecular fragment) at high or low resolution, plus
masses and relative abundance of collections with isotopic contribu-
tions.

- Detect topological symmetry in graphs.
- Generate all stereoisomers.
-Find all cycles in a graph.
- Define and name a new subgraph (with specialized editor).
- Restrict generation of structures to those containing [GOODLIST]

or not containing [BADLIST] named subgraphs.
- Find all occurrences of arbitrarily complex subgraphs in a graph.
- Find the greatest common subgraph among a set of graphs.
- Label nodes and edges of a graph in all distinct ways, prospectively

avoiding symmetric labelings.
- Draw a chemical structure.

(2) Knowledge of chemical stability:
l Twenty classes of unstable families defined as acyclic subgraphs

[named on BADLIST], others easily defined and added to BADLIST.
l Three complex constraints: terpene rule, isoprene rule, Bredt’s rule.
l How to:

- Recognize keto-enol tautomerism (special form of isomerism) and
other tautomers when specified.

DENDRAL: a case study 255

(3) Knowledge of mass spectrometry:
l Distinction between low-resolution and high-resolution spectra.
l Distinction between low-voltage and high-voltage spectra.
l How to:

- Digitize an analog mass spectrum.
- Find meta-stable peaks in a spectrum.
- Interpret major features of a mass spectrum, using [about a half-

dozen] rules that are specific fragmentation patterns for a specific
family of compounds-rules already defined for alcohols, ethers,
thiols, thioethers, amines, ketones, aromatic acids, estrogenic ster-
oids, androstanes, marine sterols [roughly 50 rules in all are
defined].

- Predict a “complete” spectrum in which every bond of a molecule
breaks and every bond of every resulting fragment breaks (recur-
sively), with isotopic contributions of atoms.

- Constrain the prediction of a “complete” spectrum to plausible
breaks, as specified in the half-order theory table [about a dozen
named LISP functions in a table], assigning relative measures of
significance or likelihood of various processes and assigning place-
ment of charge to one or more resulting fragments from each
process.

- Augment the prediction of a mass spectrum with respect to [about
l-31 rules that are general processes common to every family of
compounds-rules already defined for hydrocarbon cleavage,
McLafferty rearrangements, elimination of water, carbon monox-
ide, carbon dioxide, or other user-defined “neutral species” [about
a dozen rules defined].

(4) Knowledge of synthetic chemistry:
l How to:

- Define a new chemical reaction for the program to consider [about a
dozen already defined with a specialized editor].

- Reason about plausible biosynthetic pathways from a known start-
ing material in order to restrict a set of candidate structures to those
that are plausible products of the starting material.

There are many things that DENDRAL does not know, of course. Among
missing items are knowledge of three-dimensional geometry beyond
stereoisomerism, polymeric structures, quantum chemistry, and many prop-
erties of atoms or structures such as electronegativity, dipole moments, mo-
lecular susceptibility, melting points, and crystalline forms.

In addition, all the knowledge of LISP is presupposed by the DENDRAL
programs. For example, arithmetic and set-theoretic operations, symbol man-
ipulation, interpretation of complex procedures, and countless bookkeeping

256 R. K. Lindsay et al.

operations. Considerable amounts of code are devoted to keeping track of
intermediate results in the overall processing. This “specialized bookkeeping”
knowledge is not very profound, yet it is indispensable for the integration of
many complex procedures.

Almost all DENDRAL’s knowledge is tailored to the task of molecular
structure elucidation. Although some pieces such as the representation and
graph matcher have found wider applicability, the problem-solving procedures
in DENDRAL are still very special-purpose, complex, and voluminous.

4.5. Some observations about discovery in science

We have collected several observations about the process of scientific
discovery from this work that may be pertinent to a more systematic examina-
tion of a theory of discovery. Since DENDRAL is, at least, an existence proof
that the parts of science involving data interpretation and hypothesis formation
can be automated, we believe many other problems of scientific interest can be
automated along the same lines. Thus we suggest the following generalizations.

(1) S t’ji d’ cten I c tscovery uses the same basic methods of problem solving as do
other scientific reasoning tasks and other forms of problem solving.

We note that Meta-DENDRAL is not much different in organization
from Heuristic DENDRAL. Both are a species of plan-generate-test.
Both are guided by a strong model of the domain. It was a surprisingly
small step from Heuristic DENDRAL to a rule-discovery program,
Meta-DENDRAL. No basic additions or reorganizations of the
problem-solving method were required, even though in the latter case
the results of problem solving are hypotheses (in the form of produc-
tions) that embody a limited scientific theory (concerning the behavior of
a class of compounds in the mass spectrometer).

(2) Scientific discovery is judicious exclusion and selection from a space of
possible hypotheses, as achieved through heuristic exploration.

A cognitive agent has means for generating either the members of a
set of possible hypotheses or the states of a problem space. This ability is
productive in the sense that human language is productive (as stressed
by linguist Noam Chomsky): a large set of novel combinations of a finite
set of elements can be generated even though none has been previously
encountered in the experience of the scientists. Possible hypotheses that
are at odds with firmly believed data may be rejected.

(3) In exploring the space of possible hypotheses, the scientist is strongly
influenced by initial assumptions.

Heuristic DENDRAL is a theory-driven mechanism: it finds only what
it is looking for. For example, if it does not expect to find solutions
(organic compounds) containing certain substructures, as signified by the
presence of these substructures on BADLIST, then they are not gener-

DENDRAL: a case study 257

ated. It is just such biases, (and the more the better), that allow the
programs to discover a manageable set of candidates at all.

(4) Scientific problem solving in general, and discovery in particular, outside
the well-codified areas of science, involves the employment of a large
number of vague and unverified ideas, rather than the application of
logical deduction to previously verified propositions.

It is clear that Heuristic DENDRAL does not have at its core a formal
theory of chemical stability, but rather employs a large collection of
weak partial assumptions each of limited range. We propose that this
lack of formal theory is the rule in scientific discovery, in contrast to the
classical description of scientific method as tight reasoning from estab-
lished premises. Again, contemporary writers have expressed a similar
opinion; what DENDRAL contributes is substantive detail in elabora-
tion of this view.

Note that this observation, and the following one, contrast with the
view of scientific discovery in the BACON family of programs [26-281.
In part this is due to DENDRAL’s assumption that any piece of
empirical data may be flawed, thus no single strict test of agreement (or
disagreement) with data will suffice to keep (or reject) an hypothesis.
Instead one must rely on as many parts of a partial theory and as many
data points as one has available, and then weigh all the evidence.

(5) Scientific problem solving in general, and discovery in particular, is an
interaction of top-down (expectation-driven) exploration, and bottom-up
(data-driven) exploration. Both are necessary.

Heuristic DENDRAL is driven largely in a top-down manner. How-
ever, the data (spectra) are employed by MOLION and the PLANNER
in planning and by the PREDICTOR to winnow the set of candidate
solutions.

(6) A generator that fails to guarantee completeness is not wholly satisfactory,
since one then cannot say with certainty what hypotheses have been
excluded from consideration.

This observation, and the next one, differ from the model of discovery
in Lenat’s AM and EURISKO programs. There, a generator of plaus-
ible hypotheses (conjectures) is driven by a large number of plausible
move generators, without any attempt to define the complete space of
hypotheses. In domains where a complete generator cannot be defined,
for whatever reason, a generator of plausible solutions may be worth
trying if some (or any) solution will suffice as an answer.

(7) A generator that cannot avoid duplicate (or equivalent) expressions of the
same hypothesis is not wholly satisfactory, since the generation may never
terminate.

(8) Knowledge about classes of hypotheses is more effective than knowledge
about individual hypotheses.

258 R. K. Lindsay et al

(9) A small set of plausible alternative hypotheses resulting from the genera-
tion and testing may be as valuable as a single hypothesis. The upper
bound on the acceptable size of the found set varies with problem
complexity and with the ease of discriminating among the alternatives by
other means.

Aside from the plausibility of these generalizations that inheres in the
existence of successful programs, no specific data support them. They suggest
where we might look for support, of course, since we now have them as a
source of expectations. There is anecdotal support in abundance. If the normal
mode of processing empirical data is to verify expectations, as our theory has
it, then science should appear essentially conservative, that is, exhibit few
novel theoretical formulations. Kuhn [25] argues this point at length.

Under our analysis the traditional problem of finding an effective method for
discovering hypotheses that best explain phenomena has been transformed into
finding heuristic methods that generate plausible explanations. The problem of
giving rules for producing true scientific statements has been replaced by the
problem of finding efficient heuristic rules for culling the reasonable candidates
for an explanation from an appropriate set of possible candidates.

4.6. Conclusion

Although its utility to working chemists has been limited, DENDRAL is well
known to computational chemists, who have incorporated many of the pieces
of DENDRAL in their own software. As a single software package DEN-
DRAL no longer runs; without an enthusiastic user community no one has
invested time enough to maintain it.

The major impact of DENDRAL has been on the AI community, where the
program is well known and well enough understood to generate some half-
truths as well as honest lessons. We take pride in knowing that the lessons
learned from DENDRAL are now well entrenched in the AI literature and in
the design and implementation of expert systems around the world. We hope
this paper will correct some of the half-truths.

Daniel Dennett [14] suggests that natural (or artificial) minds are viewed by
various writers in three different ways. Mind as Crystal is the view that
cognitive science should be modeled after physics: the principles of AI would
be the wave equation and general relativity equation of the mind. Mind as
Chaos is the counsel of despair: the mind, though it may be a mechanism, is so
complex and ad hoc, and its course so sensitive to initial conditions that it is
essentially without discoverable principles. The third view, the one to which
our work subscribes, is Mind as Gadget, which sees AI as engineering, and its
products as special-purpose artifacts constructed according to good design
principles, with abilities constrained by specialized knowledge acquired
through specialized experiences. This is engineering not in the sense of

DENDRAL: a case mdy 259

efficiency and cost effectiveness alone, but in the sense of applying good
engineering principles to particular tasks-at-hand. It is a view compatible with a
world in which minds and brains evolved by an opportunistic, environmentally
sensitive process of evolution, rather than springing full blown as the product
of either a grand design or a mystical force.

DENDRAL clearly is AI in the spirit of engineering gadget in Dennett’s
non-pejorative sense; most recent AI systems are as well. While DENDRAL
cannot play chess, bake a cake, or diagnose septicemia, it nonetheless em-
bodies general strategies, augmented by specialized knowledge, that give it a
measure of intelligence and which can adapt to new information. The general
strategies, recombined with other knowledge, have been shown to do well at
other tasks. This is the contemporary view of AI, a view that was advanced and
illustrated by DENDRAL. It is perhaps the major legacy of this work.

References

[l] R.C. Beavis and B.T. Chait, High-accuracy molecular mass determination of proteins using
matrix-assisted laser desorption mass spectrometry, Anal. Chemistry 62 (1990) 183661840.

[2] H. Brown, L. Hjelmeland and L.M. Masinter, Constructive graph labeling using double
cosets, Discrete Math. 7 (1974) l-30.

[3] H. Brown and L.M. Masinter, Algorithm for the construction of the graphs of organic
molecules, Discrete Math. 8 (1974) 227-244.

[4] B.G. Buchanan, A.M. Duffield and A.V. Robertson, An application of artificial intelligence
to the interpretation of mass spectra. in: G.W.A. Milne, ed., Mass Spectrometry: Techniques
and Applications (Wiley-Interscience, New York, 1971).

[5] B.G. Buchanan and E.A. Feigenbaum, Dendral and Meta-Dendral: their applications
dimension, Artif. Intell. 11 (1978) 5-24.

(61 B.G. Buchanan and T.M. Mitchell, Model-directed learning of production rules, in: D.A.
Waterman and F. Hayes-Roth, eds., Pattern Directed Inference Systems (Academic Press,
New York, 1978).

[7] B.G. Buchanan and E.H. Shortliffe, eds., Rule-Based Expert Systems: The MYCIN Experi-
ments of the Stanford Heuristic Programming Project (Addison-Wesley, Reading, MA, 1984).

[8] B.G. Buchanan, G.L. Sutherland and E.A. Feigenbaum. Heuristic DENDRAL: a program
for generating explanatory hypotheses in organic chemistry, in: B. Meltzer and D. Michie,
eds, Machine Intelligence 4 (Edinburgh University Press, Edinburgh, 1969) 209-254.

[9] B.G. Buchanan, G.L. Sutherland and E.A. Feigenbaum, Rediscovering some problems of
artificial intelligence in the context of organic chemistry, in: B. Meltzer and D. Michie, eds..
Machine intelligence 5 (Edinburgh University Press, Edinburgh, 1970) 253-280.

[lo] A. Buchs, A.B. Delfino, A.M. Duffield, C. Djerassi, B.G. Buchanan, E.A. Feigenbaum and
J. Lederberg, Applications of “artificial intelligence” for organic chemistry, VI: approach to a
genera1 method of interpreting low resolution mass spectra with a computer. Helvetica
Chimica Acta 53 (1970) 1394-1417.

[ll] H. Budzikiewicz, C. Djerassi and D.H. Williams, Interpretation of Mass Spectra of Organic
Compounds (Holden-Day, San Francisco, CA, 1964).

[12] R.E. Carhart, D.H. Smith, H. Brown and C. Djerassi, Applications of artificial intelligence
for chemical inference, XVII: an approach to computer-assisted elucidation of molecular
structure, 1. Chemical Sot. 97 (1975) 5755-5762.

[13] C. Cheer, D.H. Smith, C. Djerassi, B. Tursch, J.C. Braekman and D. Daloze, Applications
of artificial intelligence for chemical inference, XXI: the computer-assisted identification of

260 R.K. Lindsay et al

~!-&alustrol in the marine organism cespitularia ap., aff. subvirdis, Tetrahedron 32 (1976)

[14] D.C. Dennett, When philosophers encounter artificial intelligence. Daedalus (1988) 283-295.
[15] G.W. Ernst and A. Newell, GPS: Case Study in Generahty and Problem S&ing (Academic

Press, New York, 1969).
[16] E.A. Feigenbaum, Artificial intelligence: themes in the second decade, in: A.J.H. Morrell,

ed., information Processing 68, Proceedings of the IFIP Congress 1968 (North-Holland.
Amsterdam, 1968).

[17] E.A. Feigenbaum and R.W. Watson, An initial problem statement for a machine induction
research project, Artificial Intelligence Project Memo No. 30, Computer Science Department,
Stanford University, Stanford, CA (1965).

[18] A.L. Fella, J.G. Nourse and D.H. Smith, Conformation specification of chemical structures in
computer programs, J. Chemical hf. Comput. Sci. 23 (1983) 43-47.

[19] I. Goldstein and S. Papert, Artificial intelligence, language and the study of knowledge,
Cogn. Sci. 1 (1977) 84-123.

[20] N.A.B. Gray, Applications of artificial intelligence for organic chemistry: analysis of C-13
spectra, Artificial Intelligence 22 (1984) 1-21.

[21] F. Hayes-Roth, D.A. Waterman and D.B. Lenat, Building Expert Systems (Addison-Wesley.
Reading. MA. 1983).

[22] A.C. Hearn, REDUCE-2: a system and language for algebraic manipulation, in: Proceedings
ACM Second Symposium on Symbolic and Algebraic Manipulation, Los Angeles, CA (1971).

[23] D. Jardetzky, A. Lane, J.-F. Lefevre, E. Lichtarge, B. Hayes-Roth, R. Altman and B.G.
Buchanan, A new method for the determination of protein structures in solution from NMR.
in: Proceedings Twenty-Third Congress Ampere, Rome (1986).

[24] P. Karp. Hypothesis formation and qualitative reasoning in molecular biology. Ph.D. Dis-
sertation, Computer Science Department. Stanford University, Stanford. CA (1989).

[25] T.S. Kuhn, The Sfructure of Scientific Revolutions (University of Chicago Press, Chicago, IL,
1962).

[26] P. Langley, BACON-l: a general discovery system, in: Proceedings Second National Confer-
ence of the Canadian Society for Computational Studies in Intelligence. Toronto, Ont. (1978)
173-180.

[27] P. Langley, G.L. Bradshaw and H.A. Simon, BACON-5: discovery of conservation laws. in:
Proceedings IJCAI-81, Vancouver, BC (1981).

[28] P. Langley, G.L. Bradshaw and H.A. Simon, Rediscovering chemistry with the BACON
system, in: R.S. Michalski, J.G. Carbonell and T.M. Mitchell, eds., Machine Learning: An
Artificial Intelligence Approach 1 (Tioga, Palo Alto, CA, 1983) 307-329.

[29] J. Lederberg, DENDRAL-64: a system for computer construction, enumeration and notation
of organic molecules as tree structures and cyclic graphs. Part I: notational algorithm for tree
structures, Report No. CR-57029 and STAR No. N65-13158, National Aeronautics and Space
Administration (1964).

[30] J. Lederberg, DENDRAL-64: a system for computer construction, enumeration and notation
of organic molecules as tree structures and cyclic graphs. Part II: topology of cyclic graphs.
Report No. CR-68898 and STAR No. N66-14074, National Aeronautics and Space Adminis-
tration (1965).

[31] J. Lederberg, Systematics of organic molecules, graph topology and Hamilton circuits: a
general outline of the DENDRAL system, Report No. CR-68899 and STAR No. N66-14075,
National Aeronautics and Space Administration (1966).

[32] D.B. Lenat and E.A. Feigenbaum, On the thresholds of knowledge, in: Proceedings
IJCAI-87, Milan (1987) 1173-1182; also: Artif. Infell. 47 (1991) 185-250.

[33] R.K. Lindsay, Toward the development of a machine which comprehends, Doctoral Disserta-
tion, Carnegie-Mellon University, Pittsburgh, PA (1961).

[34] R.K. Lindsay, In defense of ad hoc systems, in: R. Schank and K. Colby, eds., Computer
Models of Thought and Language (Freeman, San Francisco, CA, 1973) 372-395.

[35] R.K. Lindsay, Images and inference, Cognitioti 29 (1988) 229-250.
1361 R.K. Lindsay, Symbol-processing theories and the SOAR architecture, Psychol. Sci. 2 (1991)

294-302.

DENDRAL: a case study 261

[37] R.K. Lindsay, B.C. Buchanan, E.A. Feigenbaum and J. Lederberg, Applications ofArti&ial
fntelligence for Orgunic Chemistry: The DENDRAL Project (McGraw-Hill, New York, 1980).

[38] W.A. Martin and R.J. Fateman, The MACSYMA system, in: S.R. Petrick. ed., Proceedings
ACM Second Symposium on Symbolic and Algebraic Manipulation, Los Angeles, CA (1971).

[39] J. McCarthy, Programs with common sense, in: M. Minsky, ed., Semantic Information
Processing (MIT Press. Cambridge, MA, 1968) 403-418.

[40] F.W. McLafferty, Interpretation of Muss Spectra (Benjamin, New York. 1966).
[41] A. Newell, Unijied Theories of Cognition (Harvard University Press, Cambridge, MA, 1990).
[42] J.G. Nourse, Generalized stereoisomerization modes, .I. Am. Chemical Sot. 99 (1977) 2063.
[43] J.G. Nourse, Application of the permutation group to stereoisomer generation for computer

assisted structure elucidation, in: J. Hinze. ed.. Lecture Notes in Chemistry 12 (Springer. New
York, 1979) 19.

[44] J.G. Nourse, R.E. Carhart, D.H. Smith and C. Djerassi. Applications of artificial intelligence
to chemical inference, 29: exhaustive generation of stereoisomers for structure elucidation, J.
Am. Chemical Sot. 101 (1979) 1216.

(451 B. Raphael, Robot research at Stanford Research Institute, Artificial Intelligence Center
Technical Note 64, SRI Report 1530, Stanford Research Institute, Menlo Park, CA (1972).

[46] J.A. Robinson, a machine-oriented logic based on the resolution principle, J. ACM 12 (1965)
23-41.

[47] D.E. Rumelhart J. L. McClelland and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition (MIT Press, Cambridge. MA,
1986).

1481 H.A. Simon and M. Barenfeld. Information-processing analysis of perceptual processes in
problem solving, Psychol. Rev. 76 (1969) 473-483.

[49] D.H. Smith, B.G. Buchanan, R.S. Engelmore, H. Adlercreutz and C. Djerassi, Applications
of artificial intelligence for chemical inference, IX: analysis of mixtures without prior
separation as illustrated for estrogens, J. Am. Chemical Sot. 95 (1973) 6078-6084.

[50] D.H. Smith. B.G. Buchanan, R.S. Engelmore, A.M. Duffield, A. Yeo, E.A. Feigenbaum, J.
Lederberg and C. Djerassi, Applications of artificial intelligence for chemical inference, VIII:
an approach to the computer interpretation of the high resolution mass spectra of complex
molecules. Structure elucidation of estrogenic steroids, J. Am. Chemical Sot. 94 (1972)
5962-5971.

[51] D.H. Smith, B.G. Buchanan, W.C. White, E.A. Feigenbaum, J. Lederberg and C. Djerassi,
Applications of artificial intelligence for chemical inference, X: Intsum. A data interpretation
and summary program applied to the collected mass spectra of estrogenic steroids. Tetra-
hedron 29 (1973) 311773134.

[52] D.H. Smith and R.E. Carhart, Applications of artificial intelligence for chemical inference,
XXIV: structural isomerism of mono- and sesquiterpenoid skeletons, Tetrahedron 32 (1976)
2513.

[53] D.H. Smith, J.P. Konopelski and C. Djerassi, Applications of artificial intelligence for
chemical inference, XIX: computer generation of ion structures, Organic Mass Spectrometry
11 (1976) 86-100.

[54] K. VanLehn, ed., Architectures for Intelligence. The Twenty-Second Carnegie-Mellon Sym-
posium on Cognition (Lawrence Erlbaum, Hillsdale, NJ, 1991).

[55] T.H. Varkony, R.E. Carhart and D.H. Smith, Applications of artificial intelligence for
chemical inference, XXIII: computer-assisted structure elucidation. Modelling chemical re-
action sequences used in molecular structure problems, in: W.T. Wipke, ed., Computer-
Assisted Organic Synthesis (American Chemical Society, Washington, DC, 1976).

[56] T.H. Varkony. Y. Shiloach and D.H. Smith, Computer-assisted examination of chemical
compounds for structural similarities, J. Chemical Inf. Comput. Sci. 19 (1979) 104-111.

